6,514 research outputs found

    Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network.

    Get PDF
    A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms

    Heavy Quarkonium Production at LHC through WW Boson Decays

    Full text link
    The production of the heavy (ccˉ)(c\bar{c})-quarkonium, (cbˉ)(c\bar{b})-quarkonium and (bbˉ)(b\bar{b})-quarkonium states ((QQˉ)(Q\bar{Q'})-quarkonium for short), via the W+W^+ semi-inclusive decays, has been systematically studied within the framework of the non-relativistic QCD. In addition to the two color-singlet SS-wave states, we also discuss the production of the four color-singlet PP-wave states (QQˉ)(1P1)1>|(Q\bar{Q'})(^1P_1)_{\bf 1}> and (QQˉ)(3PJ)1>(Q\bar{Q'})(^3P_J)_{\bf 1}> (with J=(1,2,3)J=(1,2,3)) together with the two color-octet components (QQˉ)(1S0)8>|(Q\bar{Q'})(^1S_0)_{\bf 8}> and (QQˉ)(3S1)8>|(Q\bar{Q'})(^3S_1)_{\bf 8}>. Improved trace technology is adopted to derive the simplified analytic expressions at the amplitude level, which shall be useful for dealing with the following cascade decay channels. At the LHC with the luminosity L1034cm2s1{\cal L}\propto 10^{34}cm^{-2}s^{-1} and the center-of-mass energy S=14\sqrt{S}=14 TeV, sizable heavy-quarkonium events can be produced through the W+W^+ boson decays, i.e. 2.57×1062.57\times10^6 ηc\eta_c, 2.65×1062.65\times10^6 J/ΨJ/\Psi and 2.40×1062.40\times10^6 PP-wave charmonium events per year can be obtained; and 1.01×1051.01\times10^5 BcB_c, 9.11×1049.11\times10^4 BcB^*_c and 3.16×1043.16\times10^4 PP-wave (cbˉ)(c\bar{b})-quarkonium events per year can be obtained. Main theoretical uncertainties have also been discussed. By adding the uncertainties caused by the quark masses in quadrature, we obtain ΓW+(ccˉ)+csˉ=524.8258.4+396.3\Gamma_{W^+\to (c\bar{c})+c\bar{s}} =524.8^{+396.3}_{-258.4} KeV, ΓW+(cbˉ)+bsˉ=13.53.29+4.73\Gamma_{W^+\to (c\bar{b})+b\bar{s}} =13.5^{+4.73}_{-3.29} KeV, ΓW+(cbˉ)+ccˉ=1.740.73+1.98\Gamma_{W^+\to (c\bar{b})+c\bar{c}}= 1.74^{+1.98}_{-0.73} KeV and ΓW+(bbˉ)+cbˉ=38.69.69+13.4\Gamma_{W^+\to (b\bar{b})+c\bar{b}}= 38.6^{+13.4}_{-9.69} eV.Comment: 24 pages, 12 figures. References updated. To be published in Phys.Rev. D. To match the published versio

    Rampant exchange of the structure and function of extramembrane domains between membrane and water soluble proteins.

    Get PDF
    Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp

    Hydrothermal Ethanol Flames in Co-Flow Jets

    Get PDF
    Results on the autoignition and stabilization of ethanol hydrothermal flames in a Supercritical Water Oxidation (SCWO) reactor operating at constant pressure are reported. The flames are observed as luminous reaction zones occurring in supercritical water; i.e., water at conditions above its critical point (approximately 22 MPa and 374 C). A co-flow injector is used to inject fuel (inner flow), comprising an aqueous solution ranging from 20%-v to 50%-v ethanol, and air (annular flow) into a reactor filled with supercritical water at approximately 24.3 MPa and 425 C. Results show hydrothermal flames are autoignited and form diffusion flames which exhibit laminar and/or turbulent features depending upon flow conditions. Two orthogonal camera views are used; one providing a backlit shadowgraphic image of the co-flow jet and the other providing color images of the flame. In addition, spectroscopic measurements of flame emissions in the UV and visible spectrum are discussed

    How to Measure the Quantum State of Collective Atomic Spin Excitation

    Full text link
    The spin state of an atomic ensemble can be viewed as two bosonic modes, i.e., a quantum signal mode and a cc-numbered ``local oscillator'' mode when large numbers of spin-1/2 atoms are spin-polarized along a certain axis and collectively manipulated within the vicinity of the axis. We present a concrete procedure which determines the spin-excitation-number distribution, i.e., the diagonal elements of the density matrix in the Dicke basis for the collective spin state. By seeing the collective spin state as a statistical mixture of the inherently-entangled Dicke states, the physical picture of its multi-particle entanglement is made clear.Comment: 6 pages, to appear in Phys. Rev.

    (ヘルメットによる)髪の乱れを防止するヘルメットの開発

    Full text link
    申請代表者: 工学部 3 年 Kim Jun U共同研究者: 工学部 3 年 山崎 賢 || 工学部 2 年 但野 由梨子アドバイザー教員: 工学研究科 生越 専介採択番号: 工-3

    Dynamical control of two-level system's decay and long time freezing

    Full text link
    We investigate with exact numerical calculation coherent control of a two-level quantum system's decay by subjecting the two-level system to many periodic ideal 2π2\pi phase modulation pulses. For three spectrum intensities (Gaussian, Lorentzian, and exponential), we find both suppression and acceleration of the decay of the two-level system, depending on difference between the spectrum peak position and the eigen frequency of the two-level system. Most interestingly, the decay of the two-level system freezes after many control pulses if the pulse delay is short. The decay freezing value is half of the decay in the first pulse delay.Comment: 6 pages, 6 figures, published in Phys. Rev.

    Edge states of zigzag bilayer graphite nanoribbons

    Full text link
    Electronic structures of the zigzag bilayer graphite nanoribbons(Z-BGNR) with various ribbon width NN are studied within the tight binding approximation. Neglecting the inter-layer hopping amplitude γ4\gamma_4, which is an order of magnitude smaller than the other inter-layer hopping parameters γ1\gamma_1 and γ3\gamma_3, there exist two fixed Fermi points ±k\pm k^* independent of the ribbon width with the peculiar energy dispersion near kk^* as \ve (k) \sim \pm (k-k^*)^N. By investigating the edge states of the Z-BGNR, we notice that the trigonal warping of the bilayer graphene sheets are reflected on in the edge state structure. With the inclusion of γ4\gamma_4, the above two Fermi points are not fixed, but drift toward the vicinity of the Dirac point with the increase of the width NN as shown by the finite scaling method and the peculiar dispersions change to the parabolic ones. The edge magnetism of the Z-BGNR is also examined by solving the half-filled Hubbard Hamiltonian for the ribbon using the Hartree-Fock approximation. We have shown that within the same side of the edges, the edge spins are aligned ferromagnetically for the experimentally relevant set of parameters.Comment: 22 pages, 7 figures; Corrections are added concerning the edge magnetis
    corecore