1,062 research outputs found

    The origin of the 90 degree magneto-optical Kerr rotation in CeSb

    Full text link
    We calculate the linear magneto-optical Kerr rotation for CeSb in the near-infrared spectral range. Using an exact formula for large Kerr rotation angles and a simplified electronic structure of CeSb we find at \hbar \omega = 0.46 eV a Kerr rotation of 90 degree which then for decreasing \omega jumps to -90 degree as recently observed. We identify the general origin of possible 180 degree polarization rotations as resulting from mainly nonmagnetic optical properties, in particular from the ratio of the dominant interband resonance frequency to the plasma frequency. The dependence of the Kerr rotation on moments and magnetization is discussed.Comment: 6 pages, REVTEX, 5 eps figure

    Temperature-Dependent Cathodoluminescence Spectroscopy and Microscopy as a Tool for Defect Identification in Semiconducting Ceramics: Application to BaTiO3 Ceramics

    Get PDF
    Cathodoluminescence (CL) spectroscopy and microscopy were applied to investigate the characteristic grain-boundary contrast in semiconducting ferroelectric BaTiO3 ceramics. It was shown, that chemically clean grain boundaries do not reveal any specific CL components neither in the visible nor in the infrared part of the spectrum. Instead, the contrast arises from at least two different non-radiative recombination centers present in the grain and the grain-boundary zones, respectively. Activation thresholds for these centers were determined from the temperature dependence of the integral CL signal down to 30K. The different values found explain the contrast reversal observed in BaTiO3 ceramics upon cooling. Starting from a consideration of the defect equilibria present in the samples after selected treatment cycles, we could attribute the non-radiative recombination centers to oxygen vacancies

    Electronic Theory for the Nonlinear Magneto-Optical Response of Transition-Metals at Surfaces and Interfaces: Dependence of the Kerr-Rotation on Polarization and on the Magnetic Easy Axis

    Full text link
    We extend our previous study of the polarization dependence of the nonlinear optical response to the case of magnetic surfaces and buried magnetic interfaces. We calculate for the longitudinal and polar configuration the nonlinear magneto-optical Kerr rotation angle. In particular, we show which tensor elements of the susceptibilities are involved in the enhancement of the Kerr rotation in nonlinear optics for different configurations and we demonstrate by a detailed analysis how the direction of the magnetization and thus the easy axis at surfaces and buried interfaces can be determined from the polarization dependence of the nonlinear magneto-optical response, since the nonlinear Kerr rotation is sensitive to the electromagnetic field components instead of merely the intensities. We also prove from the microscopic treatment of spin-orbit coupling that there is an intrinsic phase difference of 90∘^{\circ } between tensor elements which are even or odd under magnetization reversal in contrast to linear magneto-optics. Finally, we compare our results with several experiments on Co/Cu films and on Co/Au and Fe/Cr multilayers. We conclude that the nonlinear magneto-optical Kerr-effect determines uniquely the magnetic structure and in particular the magnetic easy axis in films and at multilayer interfaces.Comment: 23 pages Revtex, preprintstyle, 2 uuencoded figure

    Theory for Spin-Polarized Oscillations in Nonlinear Magneto-Optics due to Quantum Well States

    Full text link
    Using an electronic tight-binding theory we calculate the nonlinear magneto-optical response from an x-Cu/1Fe/Cu(001) film as a function of frequency and Cu overlayer thickness (x=3 ... 25). We find very strong spin-polarized quantum well oscillations in the nonlinear magneto-optical Kerr effect (NOLIMOKE). These are enhanced by the large density of Fe dd states close to the Fermi level acting as intermediate states for frequency doubling. In good agreement with experiment we find two oscillation periods of 6-7 and 11 monolayers the latter being more pronounced.Comment: 12 pages, Revtex, 3 postscript figure

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    Hydrography in the Mediterranean Sea during a cruise with RV Poseidon in April 2014

    Get PDF
    We report on data from an oceanographic cruise in the Mediterranean Sea on the German research vessel Poseidon in April 2014. Data were taken on a west–east section, starting at the Strait of Gibraltar and ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The objectives of the cruise were threefold: to contribute to the investigation of the spatial evolution of the Levantine Intermediate Water (LIW) properties and of the deep water masses in the eastern Mediterranean Sea, and to investigate the mesoscale variability of the upper water column. The measurements include salinity, temperature, oxygen and currents and were conducted with a conductivity, temperature and depth(CTD)/rosette system, an underway CTD and an acoustic Doppler current profiler (ADCP). The sections are on tracks which have been sampled during several other cruises, thus supporting the opportunity to investigate the long-term temporal development of the different variables. The use of an underway CTD made it possible to conduct measurements of temperature and salinity with a high horizontal spacing of 6 nm between stations and a vertical spacing of 1 dbar for the upper 800 m of the water column
    • …
    corecore