172 research outputs found

    Comparing physicochemical properties of printed and hand cast biocements designed for ligament replacement

    Get PDF
    In order to combat the low regenerative capabilities of ligaments, full `bone to bone' replacements are required, which will integrate with bone while providing a smooth transition to the replacement soft tissue (tissues surrounding organs in the body, not being bone). This study investigated the use of three-dimensional powder printing technology to form calcium phosphate brackets, previously used for forming bespoke scaffold geometries, to 95±0·1% accuracy of their original computer aided design. The surface and internal structures of the printed samples were characterised both chemically and morphologically and compared with hand moulded cements in the dry state and after 3 days of immersion in phosphate buffered saline. X-ray diffraction, Raman spectroscopy and SEM all showed the presence of brushite in the hand moulded samples and brushite and monetite within the printed samples. Furthermore, the printed structures have a higher level of porosity in the dry state in comparison to the hand moulded samples (36±2·2% compared to 24±0·7%) despite exhibiting a compressive strength of almost double the hand cast material. Although the compressive strength of the printed cements decreases after the 3 day immersion, there was no significant difference between the printed and hand moulded cements under the same conditions. Three-dimensional powder printing technology has enabled the manufacture of bespoke calcium phosphate brackets with properties similar to those reported for hand moulded cements

    Perfluorodecalin and bone regeneration

    Get PDF
    Perfluorodecalin (PFD) is a chemically and biologically inert biomaterial and, as many perfluorocarbons, is also hydrophobic, radiopaque and has a high solute capacity for gases such as oxygen. In this article we have demonstrated, both in vitro and in vivo, that PFD may significantly enhance bone regeneration. Firstly, the potential benefit of PFD was demonstrated by prolonging the survival of bone marrow cells cultured in anaerobic conditions. These findings translated in vivo, where PFD incorporated into bone-marrow-loaded 3D-printed scaffolds substantially improved their capacity to regenerate bone. Secondly, in addition to biological applications, we have also shown that PFD improves the radiopacity of bone regeneration biomaterials, a key feature required for the visualisation of biomaterials during and after surgical implantation. Finally, we have shown how the extreme hydrophobicity of PFD enables the fabrication of highly cohesive self-setting injectable biomaterials for bone regeneration. In conclusion, perfluorocarbons would appear to be highly beneficial additives to a number of regenerative biomaterials, especially those for bone regeneration

    Emergence of 3D Printed Dosage Forms: Opportunities and Challenges

    Get PDF
    The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) technology has evolved to such as extent that it is currently being used in a wide range of applications including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the pharmaceutical industry this technology is still in its infancy and its potential yet to be fully explored. This paper presents various 3D printing technologies such as stereolithographic, powder based, selective laser sintering, fused deposition modelling and semi-solid extrusion 3D printing. It also provides a comprehensive review of previous attempts at using 3D printing technologies on the manufacturing dosage forms with a particular focus on oral tablets. Their advantages particularly with adaptability in the pharmaceutical field have been highlighted, including design flexibility and control and manufacture which enables the preparation of dosage forms with complex designs and geometries, multiple actives and tailored release profiles. An insight into the technical challenges facing the different 3D printing technologies such as the formulation and processing parameters is provided. Light is also shed on the different regulatory challenges that need to be overcome for 3D printing to fulfil its real potential in the pharmaceutical industry
    corecore