3,615 research outputs found

    Infrared Observations During the Secondary Eclipse of HD 209458 b II. Strong Limits on the Infrared Spectrum Near 2.2 Microns

    Full text link
    We report observations of the transiting extrasolar planet, HD 209458 b, designed to detect the secondary eclipse. We employ the method of `occultation spectroscopy', which searches in combined light (star and planet) for the disappearance and reappearance of weak infrared spectral features due to the planet as it passes behind the star and reappears. Our observations cover two predicted secondary eclipse events, and we obtained 1036 individual spectra of the HD 209458 system using the SpeX instrument at the NASA IRTF in September 2001. Our spectra extend from 1.9 to 4.2 microns with a spectral resolution of 1500. We have searched for a continuum peak near 2.2 microns (caused by CO and water absorption bands), as predicted by some models of the planetary atmosphere to be approximately 6E-4 of the stellar flux, but no such peak is detected at a level of about 3E-4 of the stellar flux. Our results represent the strongest limits on the infrared spectrum of the planet to date and carry significant implications for understanding the planetary atmosphere. In particular, some models that assume the stellar irradiation is re-radiated entirely on the sub-stellar hemisphere predict a flux peak inconsistent with our observations. Several physical mechanisms can improve agreement with our observations, including the re-distribution of heat by global circulation, a nearly isothermal atmosphere, and/or the presence of a high cloud.Comment: Accepted to the Astrophysical Journal 17 pages, 6 figure

    Infrared Spectra of Meteoritic SiC Grains

    Full text link
    We present here the first infrared spectra of meteoritic SiC grains. The mid-infrared transmission spectra of meteoritic SiC grains isolated from the Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in order to make available the optical properties of presolar SiC grains. These grains are most likely stellar condensates with an origin predominately in carbon stars. Measurements were performed on two different extractions of presolar SiC from the Murchison meteorite. The two samples show very different spectral appearance due to different grain size distributions. The spectral feature of the smaller meteoritic SiC grains is a relatively broad absorption band found between the longitudinal and transverse lattice vibration modes around 11.3 micron, supporting the current interpretation about the presence of SiC grains in carbon stars. In contrast to this, the spectral feature of the large (> 5 micron) grains has an extinction minimum around 10 micron. The obtained spectra are compared with commercially available SiC grains and the differences are discussed. This comparison shows that the crystal structure (e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the optical signature of SiC grains compared to e.g. grain size.Comment: 7 pages, 6 figures. To appear in A&

    Stellar evolution with mass loss - comparison of numerical and semi-analytical computations.

    Get PDF
    We present here results of stellar evolution calculations that include the latest advances in radiative opacities and neutrino cooling, and discuss on the basis of these models how the internal stellar structure responds to mass-loss from the stellar surface. This problem has particular importance for the development of semi-analytical algorithms for effi cient calculation of synthetic stellar populations with realistic (and hence complex) mass-loss scenarios. We therefore compare our numerical results with test calculations based on a semi-analytical stellar evolution method developed by us. Although small, but important, differences between results from the two methods are revealed, the evolutionary tracks in the HR-diagram predicted by the two approaches are almost identical.Comment: uuencoded Postscript, 4 pages

    The NextGen Model Atmosphere grid: II. Spherically symmetric model atmospheres for giant stars with effective temperatures between 3000 and 6800~K

    Full text link
    We present the extension of our NextGen model atmosphere grid to the regime of giant stars. The input physics of the models presented here is nearly identical to the NextGen dwarf atmosphere models, however spherical geometry is used self-consistently in the model calculations (including the radiative transfer). We re-visit the discussion of the effects of spherical geometry on the structure of the atmospheres and the emitted spectra and discuss the results of NLTE calculations for a few selected models.Comment: ApJ, in press (November 1999), 13 pages, also available at http://dilbert.physast.uga.edu/~yeti/PAPERS and at ftp://calvin.physast.uga.edu/pub/preprints/NG-giants.ps.g

    Finding cool subdwarfs using a V-J reduced proper-motion diagram: Stellar parameters for 91 candidates

    Full text link
    We present the results of a search for cool subdwarfs for which our candidates were drawn from a V-J reduced proper-motion diagram constructed by Salim & Gould (2002). Kinematic (U, V, and W) and self-consistent stellar parameters (Teff, log g, [Fe/H], and V_t) are derived for 91 candidate subdwarfs based on high resolution spectra. The observed stars span 3900K < Teff < 6200K and -2.63 < [Fe/H] < 0.25 including only 3 giants (log g < 4.0). Of the sample, 77 stars have MgH lines present in their spectra. With more than 56% of our candidate subdwarfs having [Fe/H] < -1.5, we show that the V-J reduced proper-motion diagram readily identifies metal-poor stars.Comment: PASP (in press

    Abundance Analysis of HE2148-1247, A Star With Extremely Enhanced Neutron Capture Elements

    Get PDF
    Abundances for 27 elements in the very metal poor dwarf star HE2148-1247 are presented, including many of the neutron capture elements. We establish that HE2148-1247 is a very highly s-process enhanced star with anomalously high Eu as well, Eu/H about half Solar, demonstrating the large addition of heavy nuclei at [Fe/H] = -2.3 dex. Ba and La are enhanced by a somewhat larger factor and reach the solar abundance, while Pb significantly exceeds it. Ba/Eu is ten times the solar r-process ratio but much less than that of the s-process, indicating a substantial r-process addition as well. C and N are also very highly enhanced. We have found that HE2148-1247 is a radial velocity variable. The C, N and the s-process element enhancements thus presumably were produced through mass transfer from a former AGB binary companion. The large enhancement of heavy r-nuclides also requires an additional source as this is far above any inventory in the ISM at such low [Fe/H]. We further hypothesize that accretion onto the white dwarf from the envelope of the star caused accretion induced collapse of the white dwarf, forming a neutron star, which then produced heavy r-nuclides and again contaminated its companion. (abridged)Comment: Accepted by the Astrophysical Journal. Companion paper by Qian and Wasserburg follow

    Evolutionary models for very-low-mass stars and brown dwarfs with dusty atmospheres

    Get PDF
    We present evolutionary calculations for very-low-mass stars and brown dwarfs based on synthetic spectra and non-grey atmosphere models which include dust formation and opacity, i.e. objects with \te\simle 2800 K. The interior of the most massive brown dwarfs is shown to develop a conductive core after ∌2\sim 2 Gyr which slows down their cooling. Comparison is made in optical and infrared color-magnitude diagrams with recent late-M and L-dwarf observations. The saturation in optical colors and the very red near-infrared colors of these objects are well explained by the onset of dust formation in the atmosphere. Comparison of the faintest presently observed L-dwarfs with these dusty evolutionary models suggests that dynamical processes such as turbulent diffusion and gravitational settling are taking place near the photosphere. As the effective temperature decreases below \te\approx 1300-1400 K, the colors of these objects move to very blue near-infrared colors, a consequence of the ongoing methane absorption in the infrared. We suggest the possibility ofa brown dwarf dearth in J,H,KJ,H,K color-magnitude diagrams around this temperature.Comment: 38 pages, Latex file, uses aasms4.sty, accepted for publication in Ap

    The NextGen Model Atmosphere grid for 3000\le \Teff \le 10000\K

    Full text link
    We present our NextGen Model Atmosphere grid for low mass stars for effective temperatures larger than 3000\K. These LTE models are calculated with the same basic model assumptions and input physics as the VLMS part of the NextGen grid so that the complete grid can be used, e.g., for consistent stellar evolution calculations and for internally consistent analysis of cool star spectra. This grid is also the starting point for a large grid of detailed NLTE model atmospheres for dwarfs and giants (Hauschildt et al, in preparation). The models were calculated from 3000\K to 10000\K (in steps of 200\K) for 3.5 \le \logg \le 5.5 (in steps of 0.5) and metallicities of -4.0 \le \mh \le 0.0. We discuss the results of the model calculations and compare our results to the Kurucz 1994 grid. Some comparisons to standard stars like Vega and the Sun are presented and compared with detailed NLTE calculations.Comment: ApJ, in press. 19 pages, also available at ftp://calvin.physast.uga.edu/pub/preprints/NextGen.ps.g
    • 

    corecore