3,211 research outputs found

    The population of white dwarf binaries with hot subdwarf companions

    Get PDF
    Hot subdwarfs (sdBs) are core helium-burning stars, which lost almost their entire hydrogen envelope in the red-giant phase. Since a high fraction of those stars are in close binary systems, common envelope ejection is an important formation channel. We identified a total population of 51 close sdB+WD binaries based on time-resolved spectroscopy and multi-band photometry, derive the WD mass distribution and constrain the future evolution of these systems. Most WDs in those binaries have masses significantly below the average mass of single WDs and a high fraction of them might therefore have helium cores. We found 12 systems that will merge in less than a Hubble time and evolve to become either massive C/O WDs, AM\,CVn systems, RCrB stars or even explode as supernovae type Ia.Comment: 5 pages, 2 figures, to appear in the proceedings of the 19th European White Dwarf Workshop, ASP Conf. Se

    Study of Viscoelastic Effect on the Frequency Shift of Microcantilever Chemical Sensors (proceedings)

    Get PDF
    Microcantilevers coated with a chemically sensitive layer are increasingly being used in chemical detection systems. The sensitive coating, often a polymer, absorbs specific molecules, which can be detected by monitoring the shift in the mechanical resonant frequency. Usually, the frequency shift resulting from molecular absorption is interpreted as a mass loading effect. However, mass loading is not the only effect that has an impact on the frequency shift; the viscoelastic properties of the sensitive coating are also affected by the sorption process. Sorption-induced modulus changes are typically difficult to characterize. However, it is known that the sorption of analyte molecules in a polymer coating results in the plasticization of the coating. In most cases, the polymer becomes more rubbery with increasing concentration of analyte molecules, i.e., the coating becomes softer with increasing loss modulus while the storage modulus decreases. Using a new analytical model developed for the resonant frequency expression of a hybrid microcantilever (elastic base and viscoelastic layer), the effects of the modification of the storage and loss moduli of the sensitive layer on the resonant frequency are examined. The main conclusion of this analytical study is that, even if the sensitive coating moduli are small compared to the base cantilever\u27s Young\u27s modulus, the effect of the change in the viscoelastic coating properties could contribute significantly to the overall frequency shift (8-23% in the simulations depending on the coating thickness, with even higher contributions for other sets of problem parameters)

    Effect of Viscoelasticity on Quality Factor of Microcantilever Chemical Sensors: Optimal Coating Thickness for Minimum Limit of Detection

    Get PDF
    Microcantilevers with polymer coatings hold great promise as resonant chemical sensors. It is known that the coated cantilever sensitivity increases with coating thickness; however, the drawback of increasing the coating thickness is the increase of the frequency noise and thus the deterioration of the sensor\u27s limit of detection. In this paper, an analytical expression for the viscoelastic losses in the coating, hence the quality factor is established and is used to explain the observed increase of the frequency noise with the polymer thickness. This result is then used to demonstrate that an optimum coating thickness exists that minimise the limit of detectio

    Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures

    Full text link
    Large RNA molecules often carry multiple functional domains whose spatial arrangement is an important determinant of their function. Pre-mRNA splicing, furthermore, relies on the spatial proximity of the splice junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes. Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium therefore provides useful information on the overall shape of the molecule can provide insights into the interplay of its functional domains. Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that the equilibrium distribution of graph-distances between arbitrary nucleotides can be computed in polynomial time by means of dynamic programming. A naive implementation would yield recursions with a very high time complexity of O(n^11). Although we were able to reduce this to O(n^6) for many practical applications a further reduction seems difficult. We conclude, therefore, that sampling approaches, which are much easier to implement, are also theoretically favorable for most real-life applications, in particular since these primarily concern long-range interactions in very large RNA molecules.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Dual Magnetic Separator for TRIμ\muP

    Full text link
    The TRIμ\muP facility, under construction at KVI, requires the production and separation of short-lived and rare isotopes. Direct reactions, fragmentation and fusion-evaporation reactions in normal and inverse kinematics are foreseen to produce nuclides of interest with a variety of heavy-ion beams from the superconducting cyclotron AGOR. For this purpose, we have designed, constructed and commissioned a versatile magnetic separator that allows efficient injection into an ion catcher, i.e., gas-filled stopper/cooler or thermal ionizer, from which a low energy radioactive beam will be extracted. The separator performance was tested with the production and clean separation of 21^{21}Na ions, where a beam purity of 99.5% could be achieved. For fusion-evaporation products, some of the features of its operation as a gas-filled recoil separator were tested.Comment: accepted by Nucl.Instr. Meth., final versio

    Searching for O2_2 in the SMC:Constraints on Oxygen Chemistry at Low Metallicities

    Full text link
    We present a 39 h integration with the Odin satellite on the ground-state 118.75 GHz line of O2 towards the region of strongest molecular emission in the Small Magellanic Cloud. Our 3sigma upper limit to the O2 integrated intensity of <0.049 K km/s in a 9'(160 pc) diameter beam corresponds to an upper limit on the O2/H2 abundance ratio of <1.3E-6. Although a factor of 20 above the best limit on the O2 abundance obtained for a Galactic source, our result has interesting implications for understanding oxygen chemistry at sub-solar metal abundances. We compare our abundance limit to a variety of astrochemical models and find that, at low metallicities, the low O2 abundance is most likely produced by the effects of photo-dissociation on molecular cloud structure. Freeze-out of molecules onto dust grains may also be consistent with the observed abundance limit, although such models have not yet been run at sub-solar initial metallicities.Comment: 4 pages, accepted to A&A Letter

    4f-spin dynamics in La(2-x-y)Sr(x)Nd(y)CuO(4)

    Full text link
    We have performed inelastic magnetic neutron scattering experiments on La(2-x-y)Sr(x)Nd(y)CuO(4) in order to study the Nd 4f-spin dynamics at low energies. In all samples we find at high temperatures a quasielastic line (Lorentzian) with a line width which decreases on lowering the temperature. The temperature dependence of the quasielastic line width Gamma/2(T) can be explained with an Orbach-process, i.e. a relaxation via the coupling between crystal field excitations and phonons. At low temperatures the Nd-4f magnetic response S(Q,omega) correlates with the electronic properties of the CuO(2)-layers. In the insulator La(2-y)Nd(y)CuO(4) the quasielastic line vanishes below 80 K and an inelastic excitation occurs. This directly indicates the splitting of the Nd3+ ground state Kramers doublet due to the static antiferromagnetic order of the Cu moments. In La(1.7-x)Sr(x)Nd(0.3)CuO(4) with x = 0.12, 0.15 and La(1.4-x)Sr(x)Nd(0.6)CuO(4) with x = 0.1, 0.12, 0.15, 0.18 superconductivity is strongly suppressed. In these compounds we observe a temperature independent broad quasielastic line of Gaussian shape below T about 30 K. This suggests a distribution of various internal fields on different Nd sites and is interpreted in the frame of the stripe model. In La(1.8-y)Sr(0.2)Nd(y)CuO(4) (y = 0.3, 0.6) such a quasielastic broadening is not observed even at lowest temperature.Comment: 8 pages, 10 figures included, to appear in Phys. Rev.
    • …
    corecore