1,352 research outputs found

    A formal approach to autonomic systems programming: the SCEL Language

    Get PDF
    The autonomic computing paradigm has been proposed to cope with size, complexity and dynamism of contemporary software-intensive systems. The challenge for language designers is to devise appropriate abstractions and linguistic primitives to deal with the large dimension of systems, and with their need to adapt to the changes of the working environment and to the evolving requirements. We propose a set of programming abstractions that permit to represent behaviors, knowledge and aggregations according to specific policies, and to support programming context-awareness, self-awareness and adaptation. Based on these abstractions, we define SCEL (Software Component Ensemble Language), a kernel language whose solid semantic foundations lay also the basis for formal reasoning on autonomic systems behavior. To show expressiveness and effectiveness of SCEL’s design, we present a Java implementation of the proposed abstractions and show how it can be exploited for programming a robotics scenario that is used as a running example for describing features and potentials of our approac

    Tibial tuberosity derotation: a surgical procedure for realignment of the patellofemoral mechanism

    Get PDF
    We retrospectively reviewed the clinical outcomes of 22 patients (9 men and 13 women) aged 17–42 years, and affected with anterior knee pain. These patients underwent surgical derotation of the tibial tuberosity in the period between September 1992 and December 1993. We describe the details of this new surgical technique to correct a torsional abnormality that has perhaps been underestimated in the past, as a possible cause of anterior knee pain. Follow-up clinical and radiographic controls (average follow-up, 78 months; range 72–87 months) allowed us to document the efficacy of this new procedure as a treatment for anterior knee pain resistant to conservative therapy, in young patients with external hypertorsion of the proximal tibial metaphysis and without significant chondropathology

    State of the art: iterative CT reconstruction techniques

    Get PDF
    Owing to recent advances in computing power, iterative reconstruction (IR) algorithms have become a clinically viable option in computed tomographic (CT) imaging. Substantial evidence is accumulating about the advantages of IR algorithms over established analytical methods, such as filtered back projection. IR improves image quality through cyclic image processing. Although all available solutions share the common mechanism of artifact reduction and/or potential for radiation dose savings, chiefly due to image noise suppression, the magnitude of these effects depends on the specific IR algorithm. In the first section of this contribution, the technical bases of IR are briefly reviewed and the currently available algorithms released by the major CT manufacturers are described. In the second part, the current status of their clinical implementation is surveyed. Regardless of the applied IR algorithm, the available evidence attests to the substantial potential of IR algorithms for overcoming traditional limitations in CT imaging

    BIOMECHANICAL STUDY ON CADAVER KNEE FOR THE EVALUATION OF CRUCIATE KNEE LIGAMENT RECONSTRUCTIONS

    Get PDF
    INTRODUCTION: Ruptures of the anterior and posterior cruciate knee ligament (ACL and PCL), alone or combined, are some of the most frequent joint injuries, especially in sports. The long-term unsatisfactory results and lack of systematic evaluation of surgical reconstructions have led us to undergo an evaluation on cadaver knees. MATERIAL AND METHOD: A preliminary study was performed on one cadaver knee. The femur was fixed on a holder and magnetic sensors “BirdsTM” were attached to the tibia and the femur, which tracked the knee’s movement. A threedimensional knee analyzer GENI(1) was used to calculate kinematic parameters (tibial internal and external rotation and ab/adduction), as well as ligament combined deformation (elongation / bending / torsion) during knee flexion. This experiment was performed on an intact knee and a knee where the PCL has been cut and reconstructed using a synthetic Trevia ligament. Finally the knee was dissected to produce a combined postero-lateral instability and reconstructed with and without postero-lateral corner reconstruction. The effect of different reconstruction methods on kinematics and ligament deformation were compared. RESULTS AND DISCUSSION: Kinematic parameters changed significantly when PCl and postero-lateral corner were dissected. The reconstruction of the PCL alone, using an “Over-the-Bottom” method described by Krudwig(2), shifted the curves back to the initial situation and decreased the variability of the movement. Ligament deformation was 3 mm elongation, 50o femoral flexion and 90o torsion. These values are in accordance with material properties and should lead to good long-term biofunctionnality. CONCLUSION: This study proposes an in vitro protocol for a better understanding of the clinical success or failure of different procedures. Preliminary results showed that the system and the protocol setup are sensitive to changes in kinematics following posterior cruciate ligament dissection and reconstruction. Experiments are performed at this time on several cadaver knees, in order to compare different reconstruction methods. REFERENCES: Sati, M. et al. (1997). Computer Assisted Knee Surgery: Diagnostics and Planning of Knee Surgery. Computer Aided Surgery 2, 108-123. Krudwig, W. (1997). In L'H. Yahia (Ed.), Ligaments and Ligamentoplasties. Heidelberg: Springer Verlag

    A Logic with Reverse Modalities for History-preserving Bisimulations

    Full text link
    We introduce event identifier logic (EIL) which extends Hennessy-Milner logic by the addition of (1) reverse as well as forward modalities, and (2) identifiers to keep track of events. We show that this logic corresponds to hereditary history-preserving (HH) bisimulation equivalence within a particular true-concurrency model, namely stable configuration structures. We furthermore show how natural sublogics of EIL correspond to coarser equivalences. In particular we provide logical characterisations of weak history-preserving (WH) and history-preserving (H) bisimulation. Logics corresponding to HH and H bisimulation have been given previously, but not to WH bisimulation (when autoconcurrency is allowed), as far as we are aware. We also present characteristic formulas which characterise individual structures with respect to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    The Hypermultiplet with Heisenberg Isometry in N=2 Global and Local Supersymmetry

    Get PDF
    The string coupling of N=2 supersymmetric compactifications of type II string theory on a Calabi-Yau manifold belongs to the so-called universal dilaton hypermultiplet, that has four real scalars living on a quaternion-Kaehler manifold. Requiring Heisenberg symmetry, which is a maximal subgroup of perturbative isometries, reduces the possible manifolds to a one-parameter family that describes the tree-level effective action deformed by the only possible perturbative correction arising at one-loop level. A similar argument can be made at the level of global supersymmetry where the scalar manifold is hyper-Kaehler. In this work, the connection between global and local supersymmetry is explicitly constructed, providing a non-trivial gravity decoupled limit of type II strings already in perturbation theory.Comment: 24 page

    Fractional-order operators: Boundary problems, heat equations

    Full text link
    The first half of this work gives a survey of the fractional Laplacian (and related operators), its restricted Dirichlet realization on a bounded domain, and its nonhomogeneous local boundary conditions, as treated by pseudodifferential methods. The second half takes up the associated heat equation with homogeneous Dirichlet condition. Here we recall recently shown sharp results on interior regularity and on LpL_p-estimates up to the boundary, as well as recent H\"older estimates. This is supplied with new higher regularity estimates in L2L_2-spaces using a technique of Lions and Magenes, and higher LpL_p-regularity estimates (with arbitrarily high H\"older estimates in the time-parameter) based on a general result of Amann. Moreover, it is shown that an improvement to spatial C∞C^\infty -regularity at the boundary is not in general possible.Comment: 29 pages, updated version, to appear in a Springer Proceedings in Mathematics and Statistics: "New Perspectives in Mathematical Analysis - Plenary Lectures, ISAAC 2017, Vaxjo Sweden

    First mineralogical maps of 4 Vesta

    Get PDF
    Before Dawn arrived at 4 Vesta only very low spatial resolution (~50 km) albedo and color maps were available from HST data. Also ground-based color and spectroscopic data were utilized as a first attempt to map Vesta’s mineralogical diversity [1-4]. The VIR spectrometer [5] onboard Dawn has ac-quired hyperspectral data while the FC camera [6] ob-tained multi-color data of the Vestan surface at very high spatial resolutions, allowing us to map complex geologic, morphologic units and features. We here re-port about the results obtained from a preliminary global mineralogical map of Vesta, based on data from the Survey orbit. This map is part of an iterative map-ping effort; the map is refined with each improvement in resolution

    Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers

    Full text link
    The multigap superconductivity modulated by quantum confinement effects in a superlattice of quantum wells is presented. Our theoretical BCS approach captures the low-energy physics of a shape resonance in the superconducting gaps when the chemical potential is tuned near a Lifshitz transition. We focus on the case of weak Cooper-pairing coupling channels and strong pair exchange interaction driven by repulsive Coulomb interaction that allows to use the BCS theory in the weak-coupling regime neglecting retardation effects like in quantum condensates of ultracold gases. The calculated matrix element effects in the pairing interaction are shown to yield a complex physics near the particular quantum critical points due to Lifshitz transitions in multigap superconductivity. Strong deviations of the ratio 2Δ/Tc2\Delta/T_c from the standard BCS value as a function of the position of the chemical potential relative to the Lifshitz transition point measured by the Lifshitz parameter are found. The response of the condensate phase to the tuning of the Lifshitz parameter is compared with the response of ultracold gases in the BCS-BEC crossover tuned by an external magnetic field. The results provide the description of the condensates in this regime where matrix element effects play a key role.Comment: 12 pages, 6 figure

    Ultrasonography of salivary glands in primary Sjögren's syndrome: A comparison with contrast sialography and scintigraphy

    Get PDF
    Objective. To compare ultrasonography (US) of salivary glands with contrast sialography and scintigraphy, in order to evaluate the diagnostic value of this method in primary SS (pSS). Methods. The diagnostic value of parotid gland US was studied in 77 patients with pSS (male/female ratio 3/74; mean age 54 yrs) and in 79 with sicca symptoms but without SS. The two groups were matched for sex and age. Imaging findings of US were graded using an ultrasonographic score ranging from 0 to 16, which was obtained by the sum of the scores for each parotid and submandibular gland. The sialographic and scintigraphic patterns were classified in four different stages. The area under receiver operating characteristic curve (AUC-ROC) was employed to evaluate the screening methods performance. Results. Of the 77 patients with pSS, 66 had abnormal US findings. Mean US score in pSS patients was 9.0 (range from 3 to 16). Subjects without confirmed pSS had the mean US score 3.9 (range from 0 to 9) (P < 0.0001). Results of sialography showed that 59 pSS patients had abnormal findings at Stage 1 (n = 4), Stage 2 (n = 8), Stage 3 (n = 33) or Stage 4 (n = 14), and 58 patients had abnormal scintigraphic findings at Stage 1 (n = 11), Stage 2 (n = 18), Stage 3 (n = 25) or Stage 4 (n = 4). Through ROC curves US arose as the best performer (AUC = 0.863 +/- 0.030), followed by sialography (AUC = 0.804 +/- 0.035) and by salivary gland scintigraphy (AUC = 0.783 +/- 0.037). The difference between AUC-ROC curve of salivary gland US and scintigraphy was significant (P = 0.034). Setting the cut-off score 6 US resulted in the best ratio of sensitivity (75.3%) to specificity (83.5%), with a likelihood ratio of 4.58. If a threshold 8.0 was applied the test gained specificity, at the cost of a serious loss of sensitivity (sensitivity 54.5%, specificity 97.5%, likelihood ratio 21.5). Conclusions. Salivary gland US is a useful method in visualizing glandular structural changes in patients suspected of having pSS and it may represent a good option as a first-line imaging tool in the diagnostics of the disease
    • 

    corecore