2,878 research outputs found

    Validating a method for the estimate of gait spatio-temporal parameters with IMUs data on healthy and impaired people from two clinical centers

    Get PDF
    Instrumented gait analysis offers objective clinical outcome assessment. To this purpose, inertial measurement units (IMUs) represent nowadays a very effective solution due to their limited cost, ease of use and improved wearability. The aim of this study was to apply a well-documented IMU-based method to measure gait spatio-temporal parameters in a large number of healthy and gait-impaired subjects, and evaluate its robustness and validity across two clinical centers. Overall, the results of this work represent a robust and reliable foundation for the clinical use of the proposed IMU based method for gait parameters estimation

    Extension of the rigid‐constraint method for the heuristic suboptimal parameter tuning to ten sensor fusion algorithms using inertial and magnetic sensing

    Get PDF
    The orientation of a magneto‐inertial measurement unit can be estimated using a sensor fusion algorithm (SFA). However, orientation accuracy is greatly affected by the choice of the SFA parameter values which represents one of the most critical steps. A commonly adopted approach is to fine‐tune parameter values to minimize the difference between estimated and true orientation. However, this can only be implemented within the laboratory setting by requiring the use of a concurrent gold‐standard technology. To overcome this limitation, a Rigid‐Constraint Method (RCM) was proposed to estimate suboptimal parameter values without relying on any orientation reference. The RCM method effectiveness was successfully tested on a single‐parameter SFA, with an average error increase with respect to the optimal of 1.5 deg. In this work, the applicability of the RCM was evaluated on 10 popular SFAs with multiple parameters under different experimental scenarios. The average residual between the optimal and suboptimal errors amounted to 0.6 deg with a maximum of 3.7 deg. These encouraging results suggest the possibility to properly tune a generic SFA on different scenarios without using any reference. The synchronized dataset also including the optical data and the SFA codes are available online

    A method for gait events detection based on low spatial resolution pressure insoles data

    Get PDF
    The accurate identification of initial and final foot contacts is a crucial prerequisite for obtaining a reliable estimation of spatio-temporal parameters of gait. Well-accepted gold standard techniques in this field are force platforms and instrumented walkways, which provide a direct measure of the foot–ground reaction forces. Nonetheless, these tools are expensive, non-portable and restrict the analysis to laboratory settings. Instrumented insoles with a reduced number of pressure sensing elements might overcome these limitations, but a suitable method for gait events identification has not been adopted yet. The aim of this paper was to present and validate a method aiming at filling such void, as applied to a system including two insoles with 16 pressure sensing elements (element area = 310 mm2), sampling at 100 Hz. Gait events were identified exploiting the sensor redundancy and a cluster-based strategy. The method was tested in the laboratory against force platforms on nine healthy subjects for a total of 801 initial and final contacts. Initial and final contacts were detected with low average errors of (about 20 ms and 10 ms, respectively). Similarly, the errors in estimating stance duration and step duration averaged 20 ms and <10 ms, respectively. By selecting appropriate thresholds, the method may be easily applied to other pressure insoles featuring similar requirements

    An optimal procedure for stride length estimation using foot-mounted magneto-inertial measurement units

    Get PDF
    Stride length is often used to quantitatively evaluate human locomotion performance. Stride by stride estimation can be conveniently obtained from the signals recorded using miniaturized inertial sensors attached to the feet and appropriate algorithms for data fusion and integration. To reduce the detrimental drift effect, different algorithmic solutions can be implemented. However, the overall method accuracy is supposed to depend on the optimal selection of the parameters which are required to be set. This study aimed at evaluating the influence of the main parameters involved in well-established methods for stride length estimation. An optimization process was conducted to improve methods' performance and preferable values for the considered parameters according to different walking speed ranges are suggested. A parametric solution is also proposed to target the methods on specific subjects' gait characteristics. The stride length estimates were obtained from straight walking trials of five healthy volunteers and were compared with those obtained from a stereo-photogrammetric system. After parameters tuning, percentage errors for stride length were 1.9%, 2.5% and 2.6% for comfortable, slow, and fast walking conditions, respectively

    Pressure ulcers management: an economic evaluation

    Get PDF
    Introduction. Pressure ulcer management represents a growing problem for medical and social health care systems all over the world, particularly in European Union countries where the incidence of pressure ulcers in older persons (> 60 years of age) is predicted to rise. Objectives. The aim of this study was to provide evidence for the lower impact on economic resources of using advanced dressings for the treatment of pressure ulcers with respect to conventional simple dressings. Methods. Two different models of analysis, derived from Activity Based Costing and Health Technology Assessment, were used to measure, over a 30-day period, the direct costs incurred by pressure ulcer treatment for community-residing patients receiving integrated home care. Results. Although the mean cost per home care visit was higher in the advanced dressings patient group than in the simple dressings patient one (? 22.31 versus ? 16.03), analysis of the data revealed that the cost of using advanced dressings was lower due to fewer home care visits (22 versus 11). Conclusion. The results underline the fact that decision-makers need to improve their understanding of the advantages of taking a long-term view with regards to the purchase and use of materials. This could produce considerable savings of resources in addition to improving treatment efficacy for the benefit of patients and the health care system

    A canine gait analysis protocol for back movement assessment in german shepherd dogs

    Get PDF
    Objective-To design and test a motion analysis protocol for the gait analysis of adult German Shepherd (GS) dogs with a focus in the analyses of their back movements. Animals-Eight clinically healthy adult large-sized GS dogs (age, 4 ± 1.3 years; weight, 38.8 ± 4.2 kg). Procedures-A six-camera stereo-photogrammetric system and two force platforms were used for data acquisition. Experimental acquisition sessions consisted of static and gait trials. During gait trials, each dog walked along a 6 m long walkway at self-selected speed and a total of six gait cycles were recorded. Results-Grand mean and standard deviation of ground reaction forces of fore and hind limbs are reported. Spatial-temporal parameters averaged over gait cycles and subjects, their mean, standard deviation and coefficient of variance are analyzed. Joint kinematics for the hip, stifle and tarsal joints and their average range of motion (ROM) values, and their 95% Confidence Interval (CI) values of kinematics curves are reported. Conclusions and Clinical Relevance-This study provides normative data of healthy GS dogs to form a preliminary basis in the analysis of the spatial-temporal parameters, kinematics and kinetics during quadrupedal stance posture and gait. Also, a new back movement protocol enabling a multi-segment back model is provided. Results show that the proposed gait analysis protocol may become a useful and objective tool for the evaluation of canine treatment with special focus on the back movement

    Analysis of the accuracy of ten algorithms for orientation estimation using inertial and magnetic sensing under optimal conditions: One size does not fit all

    Get PDF
    The orientation of a magneto and inertial measurement unit (MIMU) is estimated by means of sensor fusion algorithms (SFAs) thus enabling human motion tracking. However, despite several SFAs implementations proposed over the last decades, there is still a lack of consensus about the best performing SFAs and their accuracy. As suggested by recent literature, the filter parameters play a central role in determining the orientation errors. The aim of this work is to analyze the accuracy of ten SFAs while running under the best possible conditions (i.e., their parameter values are set using the orientation reference) in nine experimental scenarios including three rotation rates and three commercial products. The main finding is that parameter values must be specific for each SFA according to the experimental scenario to avoid errors comparable to those obtained when the de-fault parameter values are used. Overall, when optimally tuned, no statistically significant differ-ences are observed among the different SFAs in all tested experimental scenarios and the absolute errors are included between 3.8 deg and 7.1 deg. Increasing the rotation rate generally leads to a significant performance worsening. Errors are also influenced by the MIMU commercial model. SFA MATLAB implementations have been made available online

    Visuomotor Integration for Coupled Hand Movements in Healthy Subjects and Patients With Stroke

    Get PDF
    Many studies have investigated the bilateral upper limb coordination during movements under different motor and visual conditions. Bilateral training has also been proposed as an effective rehabilitative protocol for patients with stroke. However, the factors influencing in-phase vs. anti-phase coupling have not yet been fully explored. In this study, we used a motion capture device based on two infrared distance sensors to assess whether the up and down oscillation of the less functional hand (the non-dominant one in healthy younger and older subjects and the paretic one in patients with stroke) could be influenced by in-phase or anti-phase coupling of the more functional hand and by visual feedback. Similar patterns were found between single hand movements and in-phase coupled movements, whereas anti-phase coupled movements were less ample, less sinusoidal, but more frequent. These features were particularly evident for patients with stroke who showed a reduced waveform similarity of bilateral movements in all conditions but especially for anti-phase movements under visual control. These results indicate that visuomotor integration in patients with stroke could be less effective than in healthy subjects, probably because of the attentional overload required when moving the two limbs in an alternating fashion

    Overcoming barriers to the effective management of severe asthma in Italy

    Get PDF
    Introduction: People with severe asthma (SA) often have poor disease control and quality of life, and are at high risk of exacerbations, lung function decline and asthma-related death. The present expert opinion article aimed to identify unmet needs in the management of SA in Italy, and propose possible solutions to address these needs. Methods: At five multidisciplinary events in Italy, attendees identified factors that interfered with the effective management of SA and suggested how these barriers could be overcome. A core group of 12 Italian experts (pulmonologists, general practitioners, allergists, payers and patients) identified the main issues and proposed possible solutions based on the results from the meetings and relevant articles from the literature. Results and Conclusions: We reviewed the gap between real-world practice and guide-lines, oral corticosteroid overuse, SA-related mortality, and barriers to effective SA treat-ment. Common themes were lack of awareness about SA among both patients and clinicians, and lack of networking/information exchange between those involved in the treatment of SA. Participants agreed on the need to implement patient education and create multidisciplinary groups of specialists to improve SA management through multidisciplinary educational initiatives, meetings with local experts, development of a flow chart for referral/connection with local experts and specialized centers. Clinical instruments that might help specialists improve SA management included referral networks, integrated care pathways, phenotyping and treatment algorithms, exacerbation tracking, and examination of electronic medical records for patients with uncontrolled asthma. The following actions need to be implemented in Italy: i) maximize the use of advanced therapies, eg, biologics; ii) increase/improve education for physicians and patients; iii) improve multidisciplinary communication and care coordination; iv) introduce regional and local protocols for SA diagnosis and treatment; and v) change the structure of healthcare services to reduce specialist waiting times and facilitate access to biologic therapies
    • 

    corecore