17 research outputs found

    MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways

    No full text
    The microRNA-200 (miR-200) family has a critical role in regulating epithelial–mesenchymal transition and cancer cell invasion through inhibition of the E-cadherin transcriptional repressors ZEB1 and ZEB2. Recent studies have indicated that the miR-200 family may exert their effects at distinct stages in the metastatic process, with an overall effect of enhancing metastasis in a syngeneic mouse breast cancer model. We find in a xenograft orthotopic model of breast cancer metastasis that ectopic expression of members of the miR-200b/200c/429, but not the miR-141/200a, functional groups limits tumour cell invasion and metastasis. Despite modulation of the ZEB1-E-cadherin axis, restoration of ZEB1 in miR-200b-expressing cells was not able to alter metastatic potential suggesting that other targets contribute to this process. Instead, we found that miR-200b repressed several actin-associated genes, with the knockdown of the ezrin-radixin-moesin family member moesin alone phenocopying the repression of cell invasion by miR-200b. Moesin was verified to be directly targeted by miR-200b, and restoration of moesin in miR-200b-expressing cells was sufficient to alleviate metastatic repression. In breast cancer cell lines and patient samples, the expression of moesin significantly inversely correlated with miR-200 expression, and high levels of moesin were associated with poor relapse-free survival. These findings highlight the context-dependent effects of miR-200 in breast cancer metastasis and demonstrate the existence of a moesin-dependent pathway, distinct from the ZEB1-E-cadherin axis, through which miR-200 can regulate tumour cell plasticity and metastasis.X Li, S Roslan, C N Johnstone, J A Wright, C P Bracken, M Anderson, A G Bert, L A Selth R L Anderson, G J Goodall, P A Gregory, and Y Khew-Goodal

    Using wild relatives and related species to build climate resilience in Brassica crops

    No full text

    Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa.

    No full text
    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10-6), and rs7700147, an intergenic variant (P=2.93 × 10-5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.Molecular Psychiatry advance online publication, 25 July 2017; doi:10.1038/mp.2017.88
    corecore