77 research outputs found
FASTPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis
This chapter introduces the software FastPCR as an integrated tools environment for PCR primer and probe design. It also predicts oligonucleotide properties based on experimental studies of PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations, including standard, multiplex, long-distance, inverse, real-time, group-specific, unique, and overlap extension PCR for multi-fragment assembly in cloning, as well as bisulphite modification assays. It includes a programme to design oligonucleotide sets for long sequence assembly by the ligase chain reaction. The in silico PCR primer or probe search includes comprehensive analyses of individual primers and primer pairs. It calculates the melting temperature for standard and degenerate oligonucleotides including LNA and other modifications, provides analyses for a set of primers with prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity, and provides a dilution and resuspension calculator. The program includes various bioinformatics tools for analysis of sequences with GC or AT skew, of CG content and purine-pyrimidine skew, and of linguistic sequence complexity. It also permits generation of random DNA sequence and analysis of restriction enzymes of all types. It finds or creates restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It generates consensus sequences and analyses sequence conservation. It performs efficient and complete detection of various repeat types and displays them. FastPCR allows for sequence file batch processing, which is essential for automation. The FastPCR software is available for download at http://primerdigital.com/fastpcr.html and online version at http://primerdigital.com/tools/pcr.html.Peer reviewe
Streptomycin inhibits splicing of group I introns by competition with the guanosine substrate.
Streptomycin is an aminocyclitol glycoside antibiotic, which interferes with prokaryotic protein synthesis by interacting with the ribosomal RNA. We report here that streptomycin is also able to inhibit self splicing of the group I intron of the thymidylate synthase gene of phage T4. The inhibition is kinetically competitive with the substrate guanosine. Streptomycin and guanosine have in common a guanidino group, which has been shown to undergo hydrogen bonds with the ribozyme (Bass & Cech, Biochemistry, 25, 1986, 4473). The inhibitory effect of streptomycin extends to other group I introns, but does not affect group II introns. Mutating the bulged nucleotide in the conserved P7 secondary structure element of the td intron alters the affinity of the ribozyme for both guanosine and streptomycin. Myomycin, an antibiotic with similar effects on protein synthesis as streptomycin, is also able to inhibit splicing. In contrast, bluensomycin, which is structurally related to streptomycin, but contains only one guanidino group does not inhibit splicing. We discuss these findings in support of an evolutionary model that stresses the antiquity of antibiotics (J. Davies, Molecular Microbiology 4, 1990, 1227)
Lead cleavage sites in the core structure of group I intron-RNA.
Self-splicing of group I introns requires divalent metal ions to promote catalysis as well as for the correct folding of the RNA. Lead cleavage has been used to probe the intron RNA for divalent metal ion binding sites. In the conserved core of the intron, only two sites of Pb2+ cleavage have been detected, which are located close to the substrate binding sites in the junction J8/7 and at the bulged nucleotide in the P7 stem. Both lead cleavages can be inhibited by high concentrations of Mg2+ and Mn2+ ions, suggesting that they displace Pb2+ ions from the binding sites. The RNA is protected from lead cleavage by 2'-deoxyGTP, a competitive inhibitor of splicing. The two major lead induced cleavages are both located in the conserved core of the intron and at phosphates, which had independently been demonstrated to interact with magnesium ions and to be essential for splicing. Thus, we suggest that the conditions required for lead cleavage occur mainly at those sites, where divalent ions bind that are functionally involved in catalysis. We propose lead cleavage analysis of functional RNA to be a useful tool for mapping functional magnesium ion binding sites
- …