3 research outputs found

    Π“ΠΠœΠœΠ-Π‘ΠŸΠ•ΠšΠ’Π ΠžΠœΠ•Π’Π  Π”Π›Π― Π ΠΠ”Π˜ΠΠ¦Π˜ΠžΠΠΠžΠ“Πž ΠœΠžΠΠ˜Π’ΠžΠ Π˜ΠΠ“Π ΠΠšΠ’ΠΠ’ΠžΠ Π˜Π™ И Π”ΠžΠΠΠ«Π₯ ΠžΠ’Π›ΠžΠ–Π•ΠΠ˜Π™

    Get PDF
    In order to solve the problem of continuous or periodic monitoring of water areas affected by radioactive contamination in the result of scheduled emissions in nuclear power plants or in the result of emergency situations in nuclear fuel cycle plants we need to develop measurement instruments with advanced mathematics and program support to assess the level of radioactive contamination with required accuracy. The aim of theoretical research was to optimize detection device construction, estimate spectrometer metrological parameters in given measurement geometries, and determine effective position of detection device in the process of in situ measurements. This device consists of spectrometric scintillation probe packed into sealed container (detection device) based on NaI(T1) crystal of Ø 63 Γ— 63 mm or Ø 63 Γ— 160 mm size, cable reel with deep-sea cable and a tablet PC for data processing and displaying. The container withstands static hydraulic pressure up to 5 MPa and can be used for measurements at depths of 500 m maximum. Probe measures energy distribution of gammaradiation with energy from 70 keV to 3000 keV. The implemented three-dimensional system for detection device position and orientation determination allows automatic operation of the device (without operator) for water areas or bottom sediment scanning. The spectrometer can output measurement results with threedimensional geographical coordinates as index maps of distribution with necessary resolution and accuracy. Monte Carlo models of spectrometer and controlled objects are developed in order to determine the detector response functions to given radionuclides in given measurement geometries without use of expensive standard measures of activity. Multifunction gamma-spectrometer for in situ radiation monitoring of water areas and bottom sediments was developed and constructed. In the result of theoretical researches the response functions have been calculated in the form of theoretical spectra of monitored radionuclides in definite measuring geometries. The results of mathematical modeling of the gamma-emitting transfer process allowed to estimate effective position of detection device for in situ measurements of specific activity radionuclides 134Cs and 137Cs in bottom sediments.Β Π—Π°Π΄Π°Ρ‡ΠΈ постоянного ΠΈΠ»ΠΈ пСриодичСского ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π²ΠΎΠ΄ΠΎΠ΅ΠΌΠΎΠ², ΠΏΠΎΠ΄Π²Π΅Ρ€Π³ΡˆΠΈΡ…ΡΡ Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ Π·Π°Π³Ρ€ΡΠ·Π½Π΅Π½ΠΈΡŽ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΡˆΡ‚Π°Ρ‚Π½Ρ‹Ρ… выбросов АЭБ ΠΈΠ»ΠΈ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ возникновСния Π½Π΅ΡˆΡ‚Π°Ρ‚Π½Ρ‹Ρ… ситуаций Π½Π° прСдприятиях Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎΠ³ΠΎ ядСрного Ρ†ΠΈΠΊΠ»Π°, приводят ΠΊ нСобходимости Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… срСдств ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ с соврСмСнным матСматичСским ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΌ обСспСчСниСм, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΡ… ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… загрязнСний с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. ЦСль тСорСтичСских исслСдований Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π»Π°ΡΡŒ Π² ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ конструктива устройства дСтСктирования, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ мСтрологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² спСктромСтра Π² Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… гСомСтриях измСрСния, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ эффСктивного полоТСния устройства дСтСктирования спСктромСтра Π² процСссС in situ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ активности Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² 134CsΒ ΠΈ 137CsΒ Π² Π΄ΠΎΠ½Π½Ρ‹Ρ… отлоТСниях с использованиСм Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ: устройства дСтСктирования, Π²ΠΎΠ΄Ρ‹ ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Π‘ΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€ прСдставляСт собой ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ±ΠΎΡ€, состоящий ΠΈΠ· Ρ€Π°Π·ΠΌΠ΅Ρ‰Π°Π΅ΠΌΠΎΠ³ΠΎ Π² Π³Π΅Ρ€ΠΌΠ΅Ρ‚ΠΈΡ‡Π½ΠΎΠΌ ΠΊΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€Π΅ спСктромСтричСского сцинтилляционного Π±Π»ΠΎΠΊΠ° дСтСктирования с кристаллом NaI(T1) Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ Ø 63 Γ— 63 ΠΌΠΌ ΠΈΠ»ΠΈ Ø 63 Γ— 160 ΠΌΠΌ, вьюшки с Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ²ΠΎΠ΄Π½Ρ‹ΠΌ ΠΊΠ°Π±Π΅Π»Π΅ΠΌ ΠΈ ΠΏΠ»Π°Π½ΡˆΠ΅Ρ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π° для ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ отобраТСния ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. ΠšΠΎΠ½Ρ‚Π΅ΠΉΠ½Π΅Ρ€ устойчив ΠΊ статичСскому гидравличСскому давлСнию Π΄ΠΎ 5 МПа, Ρ‡Ρ‚ΠΎ позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ измСрСния Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Π°Ρ… Π΄ΠΎ 500 ΠΌ. Устройство дСтСктирования позволяСт ΠΈΠ·ΠΌΠ΅Ρ€ΡΡ‚ΡŒ энСргСтичСскоС распрСдСлСниС ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² Π³Π°ΠΌΠΌΠ°-излучСния с энСргиСй ΠΎΡ‚ 70 Π΄ΠΎ 3000 кэВ. РСализованная систСма опрСдСлСния полоТСния устройства дСтСктирования Π² пространствС позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ спСктромСтр Π² автоматичСском Ρ€Π΅ΠΆΠΈΠΌΠ΅ (Π±Π΅Π· участия ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π°) для сканирования Π²ΠΎΠ΄Π½ΠΎΠΉ Π°ΠΊΠ²Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ с Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ гСографичСскими ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎ прСдставлСны Π² Π²ΠΈΠ΄Π΅ ΠΊΠ°Ρ€Ρ‚-схСм распрСдСлСния с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΉ Π΄ΠΈΡΠΊΡ€Π΅Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. Для опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΊ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π°ΠΌ Π² Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Ρ… гСомСтриях измСрСния Π±Π΅Π· использования физичСских дорогостоящих стандартных ΠΌΠ΅Ρ€ активности Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ спСктромСтра ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² контроля. Для Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ контроля Π²ΠΎΠ΄Π½ΠΎΠΉ срСды ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ in situ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠΎΡ€Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ Π³Π°ΠΌΠΌΠ°-спСктромСтр. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ тСорСтичСских исслСдований Π±Ρ‹Π»ΠΈ рассчитаны Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° спСктромСтра ΠΊ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌ Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Π°ΠΌ Π² Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… гСомСтриях измСрСния. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ матСматичСского модСлирования процСсса пСрСноса Π³Π°ΠΌΠΌΠ°-излучСния ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡŽ устройства дСтСктирования Π² процСссС in situ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ активности Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² 134Cs ΠΈ 137Cs Π² Π΄ΠΎΠ½Π½Ρ‹Ρ… отлоТСниях.

    Π“Π°ΠΌΠΌΠ°-спСктромСтр для Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π°ΠΊΠ²Π°Ρ‚ΠΎΡ€ΠΈΠΉ ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ

    Get PDF
    In order to solve the problem of continuous or periodic monitoring of water areas affected by radioactive contamination in the result of scheduled emissions in nuclear power plants or in the result of emergency situations in nuclear fuel cycle plants we need to develop measurement instruments with advanced mathematics and program support to assess the level of radioactive contamination with required accuracy. The aim of theoretical research was to optimize detection device construction, estimate spectrometer metrological parameters in given measurement geometries, and determine effective position of detection device in the process of in situ measurements. This device consists of spectrometric scintillation probe packed into sealed container (detection device) based on NaI(T1) crystal of Ø 63 Γ— 63 mm or Ø 63 Γ— 160 mm size, cable reel with deep-sea cable and a tablet PC for data processing and displaying. The container withstands static hydraulic pressure up to 5 MPa and can be used for measurements at depths of 500 m maximum. Probe measures energy distribution of gamma-radiation with energy from 70 keV to 3000 keV. The implemented three-dimensional system for detection device position and orientation determination allows automatic operation of the device (without operator) for water areas or bottom sediment scanning. The spectrometer can output measurement results with three-dimensional geographical coordinates as index maps of distribution with necessary resolution and accuracy. Monte Carlo models of spectrometer and controlled objects are developed in order to determine the detector response functions to given radionuclides in given measurement geometries without use of expensive standard measures of activity. Multifunction gamma-spectrometer for in situ radiation monitoring of water areas and bottom sediments was developed and constructed. In the result of theoretical researches the response functions have been calculated in the form of theoretical spectra of monitored radionuclides in definite measuring geometries. The results of mathematical modeling of the gamma-emitting transfer process allowed to estimate effective position of detection device for in situ measurements of specific activity radionuclides 134Cs and 137Cs in bottom sediments

    Π“Π°ΠΌΠΌΠ°-спСктромСтр для Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π°ΠΊΠ²Π°Ρ‚ΠΎΡ€ΠΈΠΉ ΠΈ Π΄ΠΎΠ½Π½Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ

    No full text
    In order to solve the problem of continuous or periodic monitoring of water areas affected by radioactive contamination in the result of scheduled emissions in nuclear power plants or in the result of emergency situations in nuclear fuel cycle plants we need to develop measurement instruments with advanced mathematics and program support to assess the level of radioactive contamination with required accuracy. The aim of theoretical research was to optimize detection device construction, estimate spectrometer metrological parameters in given measurement geometries, and determine effective position of detection device in the process of in situ measurements. This device consists of spectrometric scintillation probe packed into sealed container (detection device) based on NaI(T1) crystal of Ø 63 Γ— 63 mm or Ø 63 Γ— 160 mm size, cable reel with deep-sea cable and a tablet PC for data processing and displaying. The container withstands static hydraulic pressure up to 5 MPa and can be used for measurements at depths of 500 m maximum. Probe measures energy distribution of gamma-radiation with energy from 70 keV to 3000 keV. The implemented three-dimensional system for detection device position and orientation determination allows automatic operation of the device (without operator) for water areas or bottom sediment scanning. The spectrometer can output measurement results with three-dimensional geographical coordinates as index maps of distribution with necessary resolution and accuracy. Monte Carlo models of spectrometer and controlled objects are developed in order to determine the detector response functions to given radionuclides in given measurement geometries without use of expensive standard measures of activity. Multifunction gamma-spectrometer for in situ radiation monitoring of water areas and bottom sediments was developed and constructed. In the result of theoretical researches the response functions have been calculated in the form of theoretical spectra of monitored radionuclides in definite measuring geometries. The results of mathematical modeling of the gamma-emitting transfer process allowed to estimate effective position of detection device for in situ measurements of specific activity radionuclides 134Cs and 137Cs in bottom sediments
    corecore