19 research outputs found

    Sputum macrophage diversity and activation in asthma: role of severity and inflammatory phenotype

    Get PDF
    BACKGROUND:Macrophages control innate and acquired immunity, but their role in severe asthma remains ill-defined. We investigated gene signatures of macrophage subtypes in the sputum of 104 asthmatics and 16 healthy volunteers from the U-BIOPRED cohort. METHODS:Forty-nine gene signatures (modules) for differentially stimulated macrophages, one to assess lung tissue-resident cells (TR-Mφ) and two for their polarization (classically and alternatively activated macrophages: M1 and M2, respectively) were studied using gene set variation analysis. We calculated enrichment scores (ES) across severity and previously identified asthma transcriptome-associated clusters (TACs). RESULTS:Macrophage numbers were significantly decreased in severe asthma compared to mild-moderate asthma and healthy volunteers. The ES for most modules were also significantly reduced in severe asthma except for 3 associated with inflammatory responses driven by TNF and Toll-like receptors via NF-κB, eicosanoid biosynthesis via the lipoxygenase pathway and IL-2 biosynthesis (all P < .01). Sputum macrophage number and the ES for most macrophage signatures were higher in the TAC3 group compared to TAC1 and TAC2 asthmatics. However, a high enrichment was found in TAC1 for 3 modules showing inflammatory pathways linked to Toll-like and TNF receptor activation and arachidonic acid metabolism (P < .001) and in TAC2 for the inflammasome and interferon signalling pathways (P < .001). Data were validated in the ADEPT cohort. Module analysis provides additional information compared to conventional M1 and M2 classification. TR-Mφ were enriched in TAC3 and associated with mitochondrial function. CONCLUSIONS:Macrophage activation is attenuated in severe granulocytic asthma highlighting defective innate immunity except for specific subsets characterized by distinct inflammatory pathways

    Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma

    Get PDF
    Background Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. Methods We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. Results ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. Conclusion Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma

    Haemophilus influenzae and Moraxella catarrhalis in sputum of severe asthma with inflammasome and neutrophil activation

    Get PDF
    BACKGROUND: Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. METHODS: Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data were analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). RESULTS: α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and β-diversities were stable at one year. CONCLUSIONS: Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation

    Determinants of SARS-CoV-2 receptor gene expression in upper and lower airways

    Get PDF
    The recent outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has led to a worldwide pandemic. One week after initial symptoms develop, a subset of patients progresses to severe disease, with high mortality and limited treatment options. To design novel interventions aimed at preventing spread of the virus and reducing progression to severe disease, detailed knowledge of the cell types and regulating factors driving cellular entry is urgently needed. Here we assess the expression patterns in genes required for COVID-19 entry into cells and replication, and their regulation by genetic, epigenetic and environmental factors, throughout the respiratory tract using samples collected from the upper (nasal) and lower airways (bronchi). Matched samples from the upper and lower airways show a clear increased expression of these genes in the nose compared to the bronchi and parenchyma. Cellular deconvolution indicates a clear association of these genes with the proportion of secretory epithelial cells. Smoking status was found to increase the majority of COVID-19 related genes including ACE2 and TMPRSS2 but only in the lower airways, which was associated with a significant increase in the predicted proportion of goblet cells in bronchial samples of current smokers. Both acute and second hand smoke were found to increase ACE2 expression in the bronchus. Inhaled corticosteroids decrease ACE2 expression in the lower airways. No significant effect of genetics on ACE2 expression was observed, but a strong association of DNA- methylation with ACE2 and TMPRSS2- mRNA expression was identified in the bronchus

    Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma

    No full text
    Background: allergic sensitization is associated with severe asthma, but assessment of sensitization is not recommended by most guidelines. Objective: we hypothesized that patterns of IgE responses to multiple allergenic proteins differ between sensitized participants with mild/moderate and severe asthma. Methods: IgE to 112 allergenic molecules (components, c-sIgE) was measured using multiplex array among 509 adults, 140 school-age and 131 pre-school children with asthma/wheeze from U-BIOPRED cohort, of whom 595 had severe disease. We applied clustering methods to identify and co-occurrence patterns of components (component clusters) and patterns of sensitization among participants (sensitization clusters). Network analysis techniques explored the connectivity structure of c-sIgE, and differential network analysis looked for differences in c-sIgE interactions between severe and mild/moderate asthma. Results: four sensitization clusters were identified, but with no difference between disease severity groups. Similarly, component clusters were not associated with asthma severity. None of the c-sIgE were identified as associates of severe asthma. The key difference between school-children and adults with mild/moderate compared to those with severe asthma was in the network of connections between c-sIgE. Participants with severe asthma had higher connectivity among components, but these connections were weaker. The mild/moderate network had fewer connections, but the connections were stronger. Connectivity between components with no structural homology tended to co-occur among participants with severe asthma. Results were independent from the different sample sizes of mild/moderate and severe groups.Conclusions: the patterns of interactions between IgE to multiple allergenic proteins are predictors of asthma severity amongst school-children and adults with allergic asthma. <br/

    Association of differential mast cell activation with granulocytic inflammation in severe asthma

    No full text
    BACKGROUND: Mast cells (MC) play a role in inflammation and both innate and adaptive immunity but their involvement in severe asthma (SA) remains undefined. OBJECTIVE: We investigated the phenotypic characteristics of the U-BIOPRED asthma cohort by applying published MC activation signatures to the sputum cell transcriptome. METHODS: 84 SA, 20 mild/moderate (MMA) asthma, and 16 non-asthmatic healthy participants were studied. We calculated enrichment scores (ES) for nine MC activation signatures by asthma severity, sputum granulocyte status and three previously-defined sputum molecular phenotypes or transcriptome-associated clusters (TAC1, 2, 3) using gene-set variation analysis. RESULTS: MC signatures except unstimulated, repeated FcεR1-stimulated and IFNγ-stimulated were enriched in SA. A FcεR1-IgE-stimulated and a single cell signature from asthmatic bronchial biopsies were highly enriched in eosinophilic asthma and in the TAC1 molecular phenotype. Subjects with a high ES for these signatures had elevated sputum levels of similar genes and pathways. IL-33- and LPS-stimulated MC signatures had greater ES in neutrophilic and mixed granulocytic asthma and in the TAC2 molecular phenotype. These subjects exhibited neutrophil, NF-κB, and IL-1β/TNFα pathway activation. The IFNγ-stimulated signature had the greatest ES in TAC2 and TAC3 that was associated with responses to viral infection. Similar results were obtained in an independent ADEPT asthma cohort. CONCLUSIONS: Gene signatures of MC activation allow the detection of SA phenotypes and indicate that MC can be induced to take on distinct transcriptional phenotypes associated with specific clinical phenotypes. IL-33-stimulated MCs signature was associated with severe neutrophilic asthma while IgE-activated MC with an eosinophilic phenotype

    Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma

    No full text
    BACKGROUND: Allergic sensitization is associated with severe asthma, but assessment of sensitization is not recommended by most guidelines. OBJECTIVE: We hypothesized that patterns of IgE responses to multiple allergenic proteins differ between sensitized participants with mild/moderate and severe asthma. METHODS: IgE to 112 allergenic molecules (components, c-sIgE) was measured using multiplex array among 509 adults and 140 school-age and 131 preschool children with asthma/wheeze from the Unbiased BIOmarkers for the PREDiction of respiratory diseases outcomes cohort, of whom 595 had severe disease. We applied clustering methods to identify co-occurrence patterns of components (component clusters) and patterns of sensitization among participants (sensitization clusters). Network analysis techniques explored the connectivity structure of c-sIgE, and differential network analysis looked for differences in c-sIgE interactions between severe and mild/moderate asthma. RESULTS: Four sensitization clusters were identified, but with no difference between disease severity groups. Similarly, component clusters were not associated with asthma severity. None of the c-sIgE were identified as associates of severe asthma. The key difference between school children and adults with mild/moderate compared with those with severe asthma was in the network of connections between c-sIgE. Participants with severe asthma had higher connectivity among components, but these connections were weaker. The mild/moderate network had fewer connections, but the connections were stronger. Connectivity between components with no structural homology tended to co-occur among participants with severe asthma. Results were independent from the different sample sizes of mild/moderate and severe groups. CONCLUSIONS: The patterns of interactions between IgE to multiple allergenic proteins are predictors of asthma severity among school children and adults with allergic asthma
    corecore