162 research outputs found

    Archaic chaperone-usher pili self-secrete into superelastic zigzag springs

    Get PDF
    Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria(1-3). Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens(1,4,5). However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections

    Component Interactions and Electron Transfer in Toluene/o-Xylene Monooxygenase

    Get PDF
    The multicomponent protein toluene/o-xylene monooxygenase (ToMO) activates molecular oxygen to oxidize aromatic hydrocarbons. Prior to dioxygen activation, two electrons are injected into each of two diiron(III) units of the hydroxylase, a process that involves three redox active proteins: the ToMO hydroxylase (ToMOH), Rieske protein (ToMOC), and an NADH oxidoreductase (ToMOF). In addition to these three proteins, a small regulatory protein is essential for catalysis (ToMOD). Through steady state and pre-steady state kinetics studies, we show that ToMOD attenuates electron transfer from ToMOC to ToMOH in a concentration-dependent manner. At substoichiometric concentrations, ToMOD increases the rate of turnover, which we interpret to be a consequence of opening a pathway for oxygen transport to the catalytic diiron center in ToMOH. Excess ToMOD inhibits steady state catalysis in a manner that depends on ToMOC concentration. Through rapid kinetic assays, we demonstrate that ToMOD attenuates formation of the ToMOC–ToMOH complex. These data, coupled with protein docking studies, support a competitive model in which ToMOD and ToMOC compete for the same binding site on the hydroxylase. These results are discussed in the context of other studies of additional proteins in the superfamily of bacterial multicomponent monooxygenases.National Institute of General Medical Sciences (U.S.) (5-R01-GM032134)United States. National Institutes of Health (T32GM008334

    Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation.

    Get PDF
    ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F(1) structures

    DNA building blocks: keeping control of manufacture

    Get PDF
    Ribonucleotide reductase (RNR) is the only source for de novo production of the four deoxyribonucleoside triphosphate (dNTP) building blocks needed for DNA synthesis and repair. It is crucial that these dNTP pools are carefully balanced, since mutation rates increase when dNTP levels are either unbalanced or elevated. RNR is the major player in this homeostasis, and with its four different substrates, four different allosteric effectors and two different effector binding sites, it has one of the most sophisticated allosteric regulations known today. In the past few years, the structures of RNRs from several bacteria, yeast and man have been determined in the presence of allosteric effectors and substrates, revealing new information about the mechanisms behind the allosteric regulation. A common theme for all studied RNRs is a flexible loop that mediates modulatory effects from the allosteric specificity site (s-site) to the catalytic site for discrimination between the four substrates. Much less is known about the allosteric activity site (a-site), which functions as an on-off switch for the enzyme's overall activity by binding ATP (activator) or dATP (inhibitor). The two nucleotides induce formation of different enzyme oligomers, and a recent structure of a dATP-inhibited α6β2 complex from yeast suggested how its subunits interacted non-productively. Interestingly, the oligomers formed and the details of their allosteric regulation differ between eukaryotes and Escherichia coli Nevertheless, these differences serve a common purpose in an essential enzyme whose allosteric regulation might date back to the era when the molecular mechanisms behind the central dogma evolved

    Structure of the Nucleotide Radical Formed during Reaction of CDP/TTP with the E441Q-α2β2 of E. coli Ribonucleotide Reductase

    Get PDF
    The Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleotides and requires a diferric-tyrosyl radical cofactor for catalysis. RNR is composed of a 1:1 complex of two homodimeric subunits: α and β. Incubation of the E441Q-α mutant RNR with substrate CDP and allosteric effector TTP results in loss of the tyrosyl radical and formation of two new radicals on the 200 ms to min time scale. The first radical was previously established by stopped flow UV/vis spectroscopy and pulsed high field EPR spectroscopy to be a disulfide radical anion. The second radical was proposed to be a 4′-radical of a 3′-keto-2′-deoxycytidine 5′-diphosphate. To identify the structure of the nucleotide radical [1′-[superscript 2]H], [2′-[superscript 2]H], [4′-[superscript 2]H], [5′-[superscript 2]H], [U−[superscript 13]C, [superscript 15]N], [U−[superscript 15]N], and [5,6 -[superscript 2]H] CDP and [β-[superscript 2]H] cysteine-α were synthesized and incubated with E441Q-α2β2 and TTP. The nucleotide radical was examined by 9 GHz and 140 GHz pulsed EPR spectroscopy and 35 GHz ENDOR spectroscopy. Substitution of [superscript 2]H at C4′ and C1′ altered the observed hyperfine interactions of the nucleotide radical and established that the observed structure was not that predicted. DFT calculations (B3LYP/IGLO-III/B3LYP/TZVP) were carried out in an effort to recapitulate the spectroscopic observations and lead to a new structure consistent with all of the experimental data. The results indicate, unexpectedly, that the radical is a semidione nucleotide radical of cytidine 5′-diphosphate. The relationship of this radical to the disulfide radical anion is discussed.National Institutes of Health (U.S.) (GM29595)(EB002804)(EB002026

    ENDOR Spectroscopy and DFT Calculations: Evidence for the Hydrogen-Bond Network Within α2 in the PCET of E. coli Ribonucleotide Reductase

    Get PDF
    Escherichia coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and β2. β2 contains a stable di-iron tyrosyl radical (Y[subscript 122]•) cofactor required to generate a thiyl radical (C[subscript 439]•) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the reduction process. The radical transfer process is proposed to occur by proton-coupled electron transfer (PCET) via a specific pathway: Y[subscript 122] ⇆ W[subscript 48][?] ⇆ Y[subscript 356] in β2, across the subunit interface to Y[subscript 731] ⇆ Y[subscript 730] ⇆ C[subscript 439] in α2. Within α2 a colinear PCET model has been proposed. To obtain evidence for this model, 3-amino tyrosine (NH2Y) replaced Y[subscript 730] in α2, and this mutant was incubated with β2, cytidine 5′-diphosphate, and adenosine 5′-triphosphate to generate a NH2Y730• in D2O. [[superscript 2]H]-Electron–nuclear double resonance (ENDOR) spectra at 94 GHz of this intermediate were obtained, and together with DFT models of α2 and quantum chemical calculations allowed assignment of the prominent ENDOR features to two hydrogen bonds likely associated with C[subscript 439] and Y[subscript 731]. A third proton was assigned to a water molecule in close proximity (2.2 Å O–H···O distance) to residue 730. The calculations also suggest that the unusual g-values measured for NH[subscript 2]Y[subscript 730]• are consistent with the combined effect of the hydrogen bonds to Cys[subscript 439] and Tyr[subscript 731], both nearly perpendicular to the ring plane of NH[subscript 2]Y[subscript 730]. The results provide the first experimental evidence for the hydrogen-bond network between the pathway residues in α2 of the active RNR complex, for which no structural data are available.National Institutes of Health (U.S.) (NIH GM29595

    Formal Reduction Potential of 3,5-Difluorotyrosine in a Structured Protein: Insight into Multistep Radical Transfer

    Get PDF
    The reversible Y–O•/Y–OH redox properties of the α[subscript 3]Y model protein allow access to the electrochemical and thermodynamic properties of 3,5-difluorotyrosine. The unnatural amino acid has been incorporated at position 32, the dedicated radical site in α[subscript 3]Y, by in vivo nonsense codon suppression. Incorporation of 3,5-difluorotyrosine gives rise to very minor structural changes in the protein scaffold at pH values below the apparent pK (8.0 ± 0.1) of the unnatural residue. Square-wave voltammetry on α[subscript 3](3,5)F[subscript 2]Y provides an E°′(Y–O•/Y–OH) of 1026 ± 4 mV versus the normal hydrogen electrode (pH 5.70 ± 0.02) and shows that the fluoro substitutions lower the E°′ by −30 ± 3 mV. These results illustrate the utility of combining the optimized α[subscript 3]Y tyrosine radical system with in vivo nonsense codon suppression to obtain the formal reduction potential of an unnatural aromatic residue residing within a well-structured protein. It is further observed that the protein E°′ values differ significantly from peak potentials derived from irreversible voltammograms of the corresponding aqueous species. This is notable because solution potentials have been the main thermodynamic data available for amino acid radicals. The findings in this paper are discussed relative to recent mechanistic studies of the multistep radical-transfer process in Escherichia coli ribonucleotide reductase site-specifically labeled with unnatural tyrosine residues.National Institutes of Health (U.S.) (Grant GM29595

    HF-EPR, Raman, UV/VIS Light Spectroscopic, and DFT Studies of the Ribonucleotide Reductase R2 Tyrosyl Radical from Epstein-Barr Virus

    Get PDF
    Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class

    Function of the Diiron Cluster of Escherichia coli Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer

    Get PDF
    The class Ia ribonucleotide reductase (RNR) from Escherichia coli employs a free-radical mechanism, which involves bidirectional translocation of a radical equivalent or “hole” over a distance of ~35 Å from the stable diferric/tyrosyl-radical (Y[subscript 122]•) cofactor in the β subunit to cysteine 439 (C[subscript 439]) in the active site of the α subunit. This long-range, intersubunit electron transfer occurs by a multistep “hopping” mechanism via formation of transient amino acid radicals along a specific pathway and is thought to be conformationally gated and coupled to local proton transfers. Whereas constituent amino acids of the hopping pathway have been identified, details of the proton-transfer steps and conformational gating within the β sununit have remained obscure; specific proton couples have been proposed, but no direct evidence has been provided. In the key first step, the reduction of Y[subscript 122]• by the first residue in the hopping pathway, a water ligand to Fe[subscript 1] of the diferric cluster was suggested to donate a proton to yield the neutral Y[subscript 122]. Here we show that forward radical translocation is associated with perturbation of the Mössbauer spectrum of the diferric cluster, especially the quadrupole doublet associated with Fe[subscript 1]. Density functional theory (DFT) calculations verify the consistency of the experimentally observed perturbation with that expected for deprotonation of the Fe[subscript 1]-coordinated water ligand. The results thus provide the first evidence that the diiron cluster of this prototypical class Ia RNR functions not only in its well-known role as generator of the enzyme’s essential Y[subscript 122]•, but also directly in catalysis.National Institutes of Health (U.S.) (GM-29595
    corecore