2,022 research outputs found

    Naturalistic driving observations within ERSO, deliverable 6.1

    Get PDF
    This deliverable reports the outcome of the first task which was to generate an inventory of variables and measurement tools necessary to monitor road safety through Naturalistic Driving Observations. This was achieved by performing the following activities: 1. Generating an inventory of relevant variables to monitor road safety within ERSO. 2. Generating an inventory of relevant variables to monitor through naturalistic driving observation. 3. Combining 1 and 2 to define the variables to be measured within ERSO by naturalistic driving observation

    Comparisons of trace constituents from ground stations and the DC-8 aircraft during PEM-West B

    Get PDF
    Chemical data from ground stations in Asia and the North Pacific are compared with data from the DC-8 aircraft collected during the Pacific Exploratory Measurements in the Western Pacific Ocean (PEM-West B) mission. Ground station sampling took place on Hong Kong, Taiwan, Okinawa, and Cheju; and at three Pacific islands, Shemya, Midway, and Oahu. Aircraft samples were collected during 19 flights, most over the western North Pacific. Aluminum was used as an indicator of mineral aerosol, and even though the aircraft did sample Asian dust, strong dust storms were not encountered. The frequency distribution for non-sea-salt sulfate (nss SO4=) in the aircraft samples was bimodal: the higher concentration mode (∼1 μg m−3) evidently originated from pollution or, less likely, from volcanic sources, while the lower mode, with a peak at 0.040 μg m−3, probably was a product of biogenic emissions. In addition, the concentrations of aerosol sulfate varied strongly in the vertical: arithmetic mean SO4=concentrations above 5000 m ( = 0.21±0.69 μg m−3) were substantially lower than those below ( = 1.07±0.87 μg m−3), suggesting the predominance of the surface sources. Several samples collected in the stratosphere exhibited elevated SO4=, however, probably as a result of emissions from Mount Pinatubo. During some boundary layer legs on the DC-8, the concentrations of CO and O3 were comparable to those of clean marine air, but during other legs, several chemically distinct air masses were sampled, including polluted air in which O3was photochemically produced. In general, the continental outflow sampled from the aircraft was substantially diluted with respect to what was observed at the ground stations. Higher concentrations of aerosol species, O3, and CO at the Hong Kong ground station relative to the aircraft suggest that much of the continental outflow from southeastern Asia occurs in the lower troposphere, and extensive long-range transport out of this part of Asia is not expected. In comparison, materials emitted farther to the north apparently are more susceptible to long-range transport

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones

    Get PDF
    In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol(-/-) embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol(-/-) mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphe nucleus and the trochlear motor nucleus are absent in mol(-/-) embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins

    Atom focusing by far-detuned and resonant standing wave fields: Thin lens regime

    Get PDF
    The focusing of atoms interacting with both far-detuned and resonant standing wave fields in the thin lens regime is considered. The thin lens approximation is discussed quantitatively from a quantum perspective. Exact quantum expressions for the Fourier components of the density (that include all spherical aberration) are used to study the focusing numerically. The following lens parameters and density profiles are calculated as functions of the pulsed field area θ\theta : the position of the focal plane, peak atomic density, atomic density pattern at the focus, focal spot size, depth of focus, and background density. The lens parameters are compared to asymptotic, analytical results derived from a scalar diffraction theory for which spherical aberration is small but non-negligible (θ1\theta \gg 1). Within the diffraction theory analytical expressions show that the focused atoms in the far detuned case have an approximately constant background density 0.5(10.635θ1/2)0.5(1-0.635\theta ^{- 1/2}) while the peak density behaves as % 3.83\theta ^{1/2}, the focal distance or time as θ1(1+1.27θ1/2)\theta ^{-1}(1+1.27\theta ^{- 1/2}), the focal spot size as 0.744θ3/40.744\theta ^{-3/4}, and the depth of focus as 1.91θ3/21.91\theta ^{- 3/2}. Focusing by the resonant standing wave field leads to a new effect, a Rabi- like oscillation of the atom density. For the far-detuned lens, chromatic aberration is studied with the exact Fourier results. Similarly, the degradation of the focus that results from angular divergence in beams or thermal velocity distributions in traps is studied quantitatively with the exact Fourier method and understood analytically using the asymptotic results. Overall, we show that strong thin lens focusing is possible with modest laser powers and with currently achievable atomic beam characteristics.Comment: 21 pages, 11 figure

    Random Sequential Addition of Hard Spheres in High Euclidean Dimensions

    Full text link
    Employing numerical and theoretical methods, we investigate the structural characteristics of random sequential addition (RSA) of congruent spheres in dd-dimensional Euclidean space Rd\mathbb{R}^d in the infinite-time or saturation limit for the first six space dimensions (1d61 \le d \le 6). Specifically, we determine the saturation density, pair correlation function, cumulative coordination number and the structure factor in each =of these dimensions. We find that for 2d62 \le d \le 6, the saturation density ϕs\phi_s scales with dimension as ϕs=c1/2d+c2d/2d\phi_s= c_1/2^d+c_2 d/2^d, where c1=0.202048c_1=0.202048 and c2=0.973872c_2=0.973872. We also show analytically that the same density scaling persists in the high-dimensional limit, albeit with different coefficients. A byproduct of this high-dimensional analysis is a relatively sharp lower bound on the saturation density for any dd given by ϕs(d+2)(1S0)/2d+1\phi_s \ge (d+2)(1-S_0)/2^{d+1}, where S0[0,1]S_0\in [0,1] is the structure factor at k=0k=0 (i.e., infinite-wavelength number variance) in the high-dimensional limit. Consistent with the recent "decorrelation principle," we find that pair correlations markedly diminish as the space dimension increases up to six. Our work has implications for the possible existence of disordered classical ground states for some continuous potentials in sufficiently high dimensions.Comment: 38 pages, 9 figures, 4 table

    On the stability of very massive primordial stars

    Full text link
    The stability of metal-free very massive stars (ZZ = 0; M = 120 - 500 \msol) is analyzed and compared with metal-enriched stars. Such zero-metal stars are unstable to nuclear-powered radial pulsations on the main sequence, but the growth time scale for these instabilities is much longer than for their metal-rich counterparts. Since they stabilize quickly after evolving off the ZAMS, the pulsation may not have sufficient time to drive appreciable mass loss in Z = 0 stars. For reasonable assumptions regarding the efficiency of converting pulsational energy into mass loss, we find that, even for the larger masses considered, the star may die without losing a large fraction of its mass. We find a transition between the ϵ\epsilon- and κ\kappa-mechanisms for pulsational instability at Z\sim 2\E{-4} - 2\E{-3}. For the most metal-rich stars, the κ\kappa-mechanism yields much shorter ee-folding times, indicating the presence of a strong instability. We thus stress the fundamental difference of the stability and late stages of evolution between very massive stars born in the early universe and those that might be born today.Comment: 7 pages, 5 figures. Minor changes, more results given in Table 1, accepted for publication in Ap

    Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate

    Full text link
    An exact theory for the density of a one-dimensional Bose-Einstein condensate with hard core particle interactions is developed in second quantization and applied to the scattering of the condensate by a spatially periodic impulse potential. The boson problem is mapped onto a system of free fermions obeying the Pauli exclusion principle to facilitate the calculation. The density exhibits a spatial focusing of the probability density as well as a periodic self-imaging in time, or Talbot effect. Furthermore, the transition from single particle to many body effects can be measured by observing the decay of the modulated condensate density pattern in time. The connection of these results to classical and atom optical phase gratings is made explicit

    Isolation and Characterisation of Genes Encoding Ice Recrystallisation Inhibition Proteins (IRIPs) in the Cryophilic Antarctic Hair-Grass (\u3ci\u3eDeschampsia Antarctica\u3c/i\u3e) and the Temperate Perennial Ryegrass (\u3ci\u3eLolium Perenne\u3c/i\u3e)

    Get PDF
    Antarctic hairgrass (D. antarctica Desv.), the only grass species indigenous to Antarctica, has a well developed tolerance of freezing, strongly induced by cold-acclimation. In response to low temperatures D. antarctica exhibits recrystallisation inhibition (RI) activity, localised to the apoplasm, that prevents further growth of ice crystals following freezing
    corecore