157 research outputs found

    Dependence of transport coefficients of Yb(Rh1x_{1-x}Cox_x)2_2Si2_2 intermetallics on temperature and cobalt concentration

    Full text link
    Dependence of transport coefficients of the Yb(Rh1x_{1-x}Cox_x)2_2Si2_2 series of alloys on temperature and cobalt concentration is explained by an asymmetric Anderson model which takes into account the exchange scattering of conduction electrons on ytterbium ions and the splitting of 4ff-states by the crystalline electric field (CEF). The substitution of rhodium by cobalt is described as an increase of chemical pressure which reduces the exchange coupling and the CEF splitting. The scaling analysis and numerical NCA solution of the model show that the effective degeneracy of the 4ff-state at a given temperature depends on the relative magnitude of the Kondo scale and the CEF splitting. Thus, we find that dependence of the thermopower, S(T)S(T), on temperature and cobalt concentration can be understood as an interplay of quantum fluctuations, driven by the Kondo effect, and thermal fluctuations, which favor a uniform occupation of the CEF states. The theoretical model captures all the qualitative features of the experimental data and it explains the evolution of the shape of S(T)S(T) with the increase of cobalt concentration.Comment: 8 pages, 4 figure

    Pr magnetism and its interplay with the Fe spin density wave in PrFeAsO

    Full text link
    We have studied the magnetism of the Pr3+ ions in PrFeAsO_1-xF_x (x = 0; 0.15) and its interaction with the Fe magnetic order (for x = 0). Specific heat data confirm the presence of a first excited crystal electric field (CEF) level around 3.5 meV in the undoped compound PrFeAsO. This finding is in agreement with recent neutron scattering experiments. The doped compound is found to have a much lower first CEF splitting of about 2.0 meV. The Pr ordering in PrFeAsO gives rise to large anomalies in the specific heat and the thermal expansion coefficient. In addition, a field-induced transition is found at low temperatures that is most pronounced for the magnetostriction coefficient. This transition, which is absent in the doped compound, is attributed to a reversal of the Fe spin canting as the antiferromagnetic Pr order is destroyed by the external magnetic field.Comment: 8 pages, 6 figure

    The superconducting gaps in LiFeAs: Joint study of specific heat and ARPES

    Full text link
    We present specific heat, c_P, and ARPES data on single crystals of the stoichiometric superconductor LiFeAs. A pronounced anomaly is found in c_P at the superconducting transition. The electronic contribution can be described by two s-type energy gaps with magnitudes of approximately Delta1 = 1.2 meV and Delta2 = 2.6 meV and a normal-state gamma coefficient of 10 mJ/mol K^2. All these values are in remarkable agreement with ARPES results.Comment: 4 pages, 3 figure

    Thermopower and thermal conductivity in the Weyl semimetal NbP

    Full text link
    The Weyl semimetal NbP exhibits an extremely large magnetoresistance (MR) and an ultra-high mobility. The large MR originates from a combination of the nearly perfect compensation between electron- and hole-type charge carriers and the high mobility, which is relevant to the topological band structure. In this work we report on temperature- and field-dependent thermopower and thermal conductivity experiments on NbP. Additionally, we carried out complementary heat capacity, magnetization, and electrical resistivity measurements. We found a giant adiabatic magnetothermopower with a maximum of 800 μ\muV/K at 50 K in a field of 9 T. Such large effects have been observed rarely in bulk materials. We suggest that the origin of this effect might be related to the high charge-carrier mobility. We further observe pronounced quantum oscillations in both thermal conductivity and thermopower. The obtained frequencies compare well with our heat capacity and magnetization data.Comment: 6 pages, 3 figure

    Evidence for a Kondo destroying quantum critical point in YbRh2Si2

    Full text link
    The heavy-fermion metal YbRh2_{2}Si2_{2} is a weak antiferromagnet below TN=0.07T_{N} = 0.07 K. Application of a low magnetic field Bc=0.06B_{c} = 0.06 T (c\perp c) is sufficient to continuously suppress the antiferromagnetic (AF) order. Below T10T \approx 10 K, the Sommerfeld coefficient of the electronic specific heat γ(T)\gamma(T) exhibits a logarithmic divergence. At T<0.3T < 0.3 K, γ(T)Tϵ\gamma(T) \sim T^{-\epsilon} (ϵ:0.30.4\epsilon: 0.3 - 0.4), while the electrical resistivity ρ(T)=ρ0+aT\rho(T) = \rho_{0} + aT (ρ0\rho_{0}: residual resistivity). Upon extrapolating finite-TT data of transport and thermodynamic quantities to T=0T = 0, one observes (i) a vanishing of the "Fermi surface crossover" scale T(B)T^{*}(B), (ii) an abrupt jump of the initial Hall coefficient RH(B)R_{H}(B) and (iii) a violation of the Wiedemann Franz law at B=BcB = B_{c}, the field-induced quantum critical point (QCP). These observations are interpreted as evidence of a critical destruction of the heavy quasiparticles, i.e., propagating Kondo singlets, at the QCP of this material.Comment: 20 pages, 8 figures, SCES 201

    Interplay between Kondo suppression and Lifshitz transitions in YbRh2_2Si2_2 at high magnetic fields

    Full text link
    We investigate the magnetic field dependent thermopower, thermal conductivity, resistivity and Hall effect in the heavy fermion metal YbRh2Si2. In contrast to reports on thermodynamic measurements, we find in total three transitions at high fields, rather than a single one at 10 T. Using the Mott formula together with renormalized band calculations, we identify Lifshitz transitions as their origin. The predictions of the calculations show that all experimental results rely on an interplay of a smooth suppression of the Kondo effect and the spin splitting of the flat hybridized bands.Comment: 5 pages, 4 figure

    Magnetism and superconductivity driven by identical 4ff states in a heavy-fermion metal

    Full text link
    The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. This is particularly the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. This enables a single 4ff state to be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.Comment: 4 pages, 4 figure

    Interplay between unconventional superconductivity and heavy-fermion quantum criticality: CeCu2_2Si2_2 versus YbRh2_2Si2_2

    Get PDF
    In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2_2Si2_2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2_2Si2_2. In YbRh2_2Si2_2, superconductivity appears to be suppressed at T 10T\gtrsim~10 mK by AF order (TNT_N = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TAT_A slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at TcT_c = 2 mK. Like the pressure - induced QCP in CeRhIn5_5, the magnetic field - induced one in YbRh2_2Si2_2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-TT unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher TcT_cs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.Comment: 30 pages, 7 Figures, Accepted for publication in Philosophical Magazin
    corecore