21,900 research outputs found

    Theory of superconductor-insulator transition in single Josephson junctions

    Full text link
    A non-band theory is developed to describe the superconductor-insulator (SI) transtition in resistively shunted, single Josephson junctions. The I−VI-V characteristic is formulated by a Landauer-like formula and evaluated by the path-integral transfer-matrix method. The result is consistent with the recent experiments at around 80 mKmK. However, the insulator phase shrinks with decreasing temperature indicating that the single Josephson junction becomes all superconducting at absolute zero temperature, as long as dissipation is present.Comment: 4 pages, 3 figure

    Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    Get PDF
    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.

    The Zeeman effect in the G band

    Full text link
    We investigate the possibility of measuring magnetic field strength in G-band bright points through the analysis of Zeeman polarization in molecular CH lines. To this end we solve the equations of polarized radiative transfer in the G band through a standard plane-parallel model of the solar atmosphere with an imposed magnetic field, and through a more realistic snapshot from a simulation of solar magneto-convection. This region of the spectrum is crowded with many atomic and molecular lines. Nevertheless, we find several instances of isolated groups of CH lines that are predicted to produce a measurable Stokes V signal in the presence of magnetic fields. In part this is possible because the effective Land\'{e} factors of lines in the stronger main branch of the CH A2Δ^{2}\Delta--X2Π^{2}\Pi transition tend to zero rather quickly for increasing total angular momentum JJ, resulting in a Stokes VV spectrum of the G band that is less crowded than the corresponding Stokes II spectrum. We indicate that, by contrast, the effective Land\'{e} factors of the RR and PP satellite sub-branches of this transition tend to ±1\pm 1 for increasing JJ. However, these lines are in general considerably weaker, and do not contribute significantly to the polarization signal. In one wavelength location near 430.4 nm the overlap of several magnetically sensitive and non-sensitive CH lines is predicted to result in a single-lobed Stokes VV profile, raising the possibility of high spatial-resolution narrow-band polarimetric imaging. In the magneto-convection snapshot we find circular polarization signals of the order of 1% prompting us to conclude that measuring magnetic field strength in small-scale elements through the Zeeman effect in CH lines is a realistic prospect.Comment: 22 pages, 6 figures. To be published in the Astrophysical Journa

    Charge-Independence Breaking in the Two-Pion-Exchange Nucleon-Nucleon Force

    Get PDF
    Charge-independence breaking due to the pion-mass difference in the (chiral) two-pion-exchange nucleon-nucleon force is investigated. A general argument based on symmetries is presented that relates the charge-symmetric part of that force to the proton-proton case. The static potential linear in that mass difference is worked out as an explicit example by means of Feynman diagrams, and this confirms the general argument.Comment: 10 pages, latex, 1 figure -- epsfig.sty required -- To appear in Phys. Rev.

    Weak-Localization and Integrability in Ballistic Cavities

    Full text link
    We demonstrate the existence of an interference contribution to the average magnetoconductance, G(B), of ballistic cavities and use it to test the semiclassical theory of quantum billiards. G(B) is qualitatively different for chaotic and regular cavities, an effect explained semiclassically by the differing classical distribution of areas. The magnitude of G(B) is poorly explained by the semiclassical theory of coherent backscattering (elastic enhancement factor)-- correlations beyond time-reversed pairs of trajectories must be included-- but is in agreement with random matrix theory.Comment: 12 pages + 3 figures, revtex, hub-92-w

    Experimental Critical Current Patterns in Josephson Junction Ladders

    Full text link
    We present an experimental and theoretical study of the magnetic field dependence of the critical current of Josephson junction ladders. At variance with the well-known case of a one-dimensional (1D) parallel array of Josephson junctions the magnetic field patterns display a single minimum even for very low values of the self-inductance parameter ÎČL\beta_{\rm L}. Experiments performed changing both the geometrical value of the inductance and the critical current of the junctions show a good agreement with numerical simulations. We argue that the observed magnetic field patterns are due to a peculiar mapping between the isotropic Josephson ladder and the 1D parallel array with the self-inductance parameter ÎČLeff=ÎČL+2\beta_{\rm L}^{\rm eff}=\beta_{\rm L}+2.Comment: 4 pages, 4 picture

    A new class of semiclassical wave function uniformizations

    Get PDF
    We present a new semiclassical technique which relies on replacing complicated classical manifold structure with simpler manifolds, which are then evaluated by the usual semiclassical rules. Under circumstances where the original manifold structure gives poor or useless results semiclassically the replacement manifolds can yield remarkable accuracy. We give several working examples to illustrate the theory presented here.Comment: 12 pages (incl. 12 figures

    Finite Sized Atomistic Simulations of Screw Dislocations

    Full text link
    The interaction of screw dislocations with an applied stress is studied using atomistic simulations in conjunction with a continuum treatment of the role played by the far field boundary condition. A finite cell of atoms is used to consider the response of dislocations to an applied stress and this introduces an additional force on the dislocation due to the presence of the boundary. Continuum mechanics is used to calculate the boundary force which is subsequently accounted for in the equilibrium condition for the dislocation. Using this formulation, the lattice resistance curve and the associated Peierls stress are calculated for screw dislocations in several close packed metals. As a concrete example of the boundary force method, we compute the bow out of a pinned screw dislocation; the line-tension of the dislocation is calculated from the results of the atomistic simulations using a variational principle that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure

    Data Reduction Techniques for High Contrast Imaging Polarimetry. Applications to ExPo

    Full text link
    Imaging polarimetry is a powerful tool for detecting and characterizing exoplanets and circumstellar environments. Polarimetry allows a separation of the light coming from an unpolarized source such as a star and the polarized source such as a planet or a protoplanetary disk. Future facilities like SPHERE at the VLT or EPICS at the E-ELT will incorporate imaging polarimetry to detect exoplanets. The Extreme Polarimeter (ExPo) is a dual-beam imaging polarimeter that currently can reach contrast ratios of 10^5, enough to characterize circumstellar environments. We present the data reduction steps for a dual-beam imaging polarimeter that can reach contrast ratios of 10^5. The data obtained with ExPo at the William Herschel Telescope (WHT) are analyzed. Instrumental artifacts and noise sources are discussed for an unpolarized star and for a protoplanetary disk (AB Aurigae). The combination of fast modulation and dual-beam techniques allow us to minimize instrumental artifacts. A proper data processing and alignment of the images is fundamental when dealing with large contrasts. Imaging polarimetry proves to be a powerful method to resolve circumstellar environments even without a coronagraph mask or an Adaptive Optics system.Comment: 9 pages, 12 Figures, Accepted for publication in A&

    Representations of the Canonical group, (the semi-direct product of the Unitary and Weyl-Heisenberg groups), acting as a dynamical group on noncommuting extended phase space

    Full text link
    The unitary irreducible representations of the covering group of the Poincare group P define the framework for much of particle physics on the physical Minkowski space P/L, where L is the Lorentz group. While extraordinarily successful, it does not provide a large enough group of symmetries to encompass observed particles with a SU(3) classification. Born proposed the reciprocity principle that states physics must be invariant under the reciprocity transform that is heuristically {t,e,q,p}->{t,e,p,-q} where {t,e,q,p} are the time, energy, position, and momentum degrees of freedom. This implies that there is reciprocally conjugate relativity principle such that the rates of change of momentum must be bounded by b, where b is a universal constant. The appropriate group of dynamical symmetries that embodies this is the Canonical group C(1,3) = U(1,3) *s H(1,3) and in this theory the non-commuting space Q= C(1,3)/ SU(1,3) is the physical quantum space endowed with a metric that is the second Casimir invariant of the Canonical group, T^2 + E^2 - Q^2/c^2-P^2/b^2 +(2h I/bc)(Y/bc -2) where {T,E,Q,P,I,Y} are the generators of the algebra of Os(1,3). The idea is to study the representations of the Canonical dynamical group using Mackey's theory to determine whether the representations can encompass the spectrum of particle states. The unitary irreducible representations of the Canonical group contain a direct product term that is a representation of U(1,3) that Kalman has studied as a dynamical group for hadrons. The U(1,3) representations contain discrete series that may be decomposed into infinite ladders where the rungs are representations of U(3) (finite dimensional) or C(2) (with degenerate U(1)* SU(2) finite dimensional representations) corresponding to the rest or null frames.Comment: 25 pages; V2.3, PDF (Mathematica 4.1 source removed due to technical problems); Submitted to J.Phys.
    • 

    corecore