207 research outputs found

    From early stress to 12-month development in very preterm infants: Preliminary findings on epigenetic mechanisms and brain growth

    Get PDF
    Very preterm (VPT) infants admitted to Neonatal Intensive Care Unit (NICU) are at risk for altered brain growth and less-than-optimal socio-emotional development. Recent research suggests that early NICU-related stress contributes to socio-emotional impairments in VPT infants at 3 months through epigenetic regulation (i.e., DNA methylation) of the serotonin transporter gene (SLC6A4). In the present longitudinal study we assessed: (a) the effects of NICU-related stress and SLC6A4 methylation variations from birth to discharge on brain development at term equivalent age (TEA); (b) the association between brain volume at TEA and socio-emotional development (i.e., Personal-Social scale of Griffith Mental Development Scales, GMDS) at 12 months corrected age (CA). Twenty-four infants had complete data at 12-month-age. SLC6A4 methylation was measured at a specific CpG previously associated with NICU-related stress and socio-emotional stress. Findings confirmed that higher NICU-related stress associated with greater increase of SLC6A4 methylation at NICU discharge. Moreover, higher SLC6A4 discharge methylation was associated with reduced anterior temporal lobe (ATL) volume at TEA, which in turn was significantly associated with less-than-optimal GMDS Personal-Social scale score at 12 months CA. The reduced ATL volume at TEA mediated the pathway linking stress-related increase in SLC6A4 methylation at NICU discharge and socio-emotional development at 12 months CA. These findings suggest that early adversity-related epigenetic changes might contribute to the long-lasting programming of socio-emotional development in VPT infants through epigenetic regulation and structural modifications of the developing brain

    Ancient Evolution of Mammarenaviruses: Adaptation via Changes in the L Protein and No Evidence for Host-Virus Codivergence

    Get PDF
    The Mammarenavirus genus includes several pathogenic species of rodent-borne viruses. Old World (OW) mammarenaviruses infect rodents in the Murinae subfamily and are mainly transmitted in Africa and Asia; New World (NW) mammarenaviruses are found in rodents of the Cricetidae subfamily in the Americas. We applied a selection-informed method to estimate that OW and NW mammarenaviruses diverged less than 3c45,000\u2009years ago (ya). By incorporating phylogeographic inference, we show that NW mammarenaviruses emerged in the Latin America-Caribbean region 3c41,400-3,300 ya, whereas OW mammarenaviruses originated 3c23,100-1,880 ya, most likely in Southern Africa. Cophylogenetic analysis indicated that cospeciation did not contribute significantly to mammarenavirus-host associations. Finally, we show that extremely strong selective pressure on the viral polymerase accompanied the speciation of NW viruses. These data suggest that the evolutionary history of mammarenaviruses was not driven by codivergence with their hosts. The viral polymerase should be regarded as a major determinant of mammarenavirus adaptation

    Evolutionary rates of mammalian telomere-stability genes correlate with karyotype features and female germline expression

    Get PDF
    Telomeres protect the ends of eukaryotic chromosomes and are essential for cell viability. In mammals, telomere dynamics vary with life history traits (e.g. body mass and longevity), suggesting differential selection depending on physiological characteristics. Telomeres, in analogy to centromeric regions, also represent candidate meiotic drivers and subtelomeric DNA evolves rapidly. We analyzed the evolutionary history of mammalian genes implicated in telomere homeostasis (TEL genes). We detected widespread positive selection and we tested two alternative hypotheses: (i) fast evolution is driven by changes in life history traits; (ii) a conflict with selfish DNA elements at the female meiosis represents the underlying selective pressure. By accounting for the phylogenetic relationships among mammalian species, we show that life history traits do not contribute to shape diversity of TEL genes. Conversely, the evolutionary rate of TEL genes correlates with expression levels during meiosis and episodes of positive selection across mammalian species are associated with karyotype features (number of chromosome arms). We thus propose a telomere drive hypothesis, whereby (sub)telomeres and telomere-binding proteins are engaged in an intra-genomic conflict similar to the one described for centromeres

    Albuminoid genes: evolving at the interface of dispensability and selection

    Get PDF
    The albuminoid gene family comprises vitamin D-binding protein (GC), alpha-fetoprotein (AFP), afamin (AFM), and albumin (ALB). Albumin is the most abundant human serum protein, and, as the other family members, acts as a transporter of endogenous and exogenous substances including thyroxine, fatty acids, and drugs. Instead, the major cargo of GC is 25-hydroxyvitamin D. We performed an evolutionarystudy of albuminoid genes and we show that ALB evolved adaptively in mammals. Most positively selected sites are located within albumin-binding sites for fatty acids and thyroxine, as well as at the contact surface with neonatal Fc receptor. Positive selection was also detected for residues forming the prostaglandin-binding pocket. Adaptation to hibernation/torpor might explain the signatures of episodic positive selection we detected for few mammalian lineages. Application of a population genetics-phylogenetics approach showed that purifying selection represented a major force acting on albuminoid genes in both humans and chimpanzees, with the strongest constraint observed for human GC. Population genetic analysis revealed that GC was also the target of locally exerted selective pressure, which drove the frequency increase of different haplotypes in distinct human populations. A search for known variants that modulate GC and 25-hydroxyvitamin D concentrations revealed linkage disequilibrium with positively selected variants, although European and Asian major GC haplotypes carry alleles with reported opposite effect on GC concentration. Data herein indicate that albumin, an extremely abundant housekeeping protein, was the target of pervasive and episodic selection in mammals, whereas GC represented a selection target during the recent evolution of human populations

    Extensive Positive Selection Drives the Evolution of Nonstructural Proteins in Lineage C Betacoronaviruses

    Get PDF
    Middle East respiratory syndrome-related coronavirus (MERS-CoV) spreads to humans via zoonotic transmission from camels. MERS-CoV belongs to lineage C of betacoronaviruses (betaCoVs), which also includes viruses isolated from bats and hedgehogs. A large portion of the betaCoV genome consists of two open reading frames (ORF1a and ORF1b) that are translated into polyproteins. These are cleaved by viral proteases to generate 16 nonstructural proteins (nsp1 to nsp16) which compose the viral replication-transcription complex. We investigated the evolution of ORF1a and ORF1b in lineage C betaCoVs. Results indicated widespread positive selection, acting mostly on ORF1a. The proportion of positively selected sites in ORF1a was much higher than that previously reported for the surface-exposed spike protein. Selected sites were unevenly distributed, with nsp3 representing the preferential target. Several pairs of coevolving sites were also detected, possibly indicating epistatic interactions; most of these were located in nsp3. Adaptive evolution at nsp3 is ongoing in MERS-CoV strains, and two selected sites (G720 and R911) were detected in the protease domain. While position 720 is variable in camel-derived viruses, suggesting that the selective event does not represent a specific adaptation to humans, the R911C substitution was observed only in human-derived MERS-CoV isolates, including the viral strain responsible for the recent South Korean outbreak. It will be extremely important to assess whether these changes affect host range or other viral phenotypes. More generally, data herein indicate that CoV nsp3 represents a major selection target and that nsp3 sequencing should be envisaged in monitoring programs and field surveys

    OASes and STING : Adaptive evolution in concert

    Get PDF
    OAS(2'-5'-oligoadenylate synthases)proteinsand cyclic GMP-AMP synthase(cGAS,genesymbol: MB21D1)patrol the cytoplasmfor the presence of foreign nucleic acids. Upon binding to double-stranded RNA or double-stranded DNA, OAS proteins and cGAS produce nucleotide second messengers to activate RNase L and STING (stimulator of interferon genes, gene symbol: TMEM173), respectively; this leads to the initiation of antiviral responses. We analyzed the evolutionary history of the MB21D1-TMEM173 and OAS-RNASEL axes in primates and bats and found evidence of widespread positive selection in both orders. In TMEM173, residue 230, a major determinant of response to natural ligands and to mimetic drugs (e.g., DMXAA), was positively selected in Primates and Chiroptera. In both orders, selection also targeted an a-helix/loop element in RNase L that modulates the enzyme preference for single-stranded RNA versus stem loops. Analysis of positively selected sites in OAS1, OAS2, and MB21D1 revealed parallel evolution, with the corresponding residues being selected in different genes. As this cannot result from gene conversion, these data suggest that selective pressure acting on OAS and MB21D1 genes is related to nucleic acid recognition and to the specific mechanism of enzyme activation, which requires a conformational change. Finally, a population genetics-phylogenetics analysis in humans, chimpanzees, and gorillas detected several positively selected sites in most genes. Data herein shed light into species-specific differences in infection susceptibility and in response to synthetic compounds, with relevance for the design of synthetic compounds as vaccine adjuvants

    Both selective and neutral processes drive GC content evolution in the human genome

    Get PDF
    Mammalian genomes consist of regions differing in GC content, referred to as isochores or GC-content domains. The scientific debate is still open as to whether such compositional heterogeneity is a selected or neutral trait. RESULTS: Here we analyze SNP allele frequencies, retrotransposon insertion polymorphisms (RIPs), as well as fixed substitutions accumulated in the human lineage since its divergence from chimpanzee to indicate that biased gene conversion (BGC) has been playing a role in within-genome GC content variation. Yet, a distinct contribution to GC content evolution is accounted for by a selective process. Accordingly, we searched for independent evidences that GC content distribution does not conform to neutral expectations. Indeed, after correcting for possible biases, we show that intron GC content and size display isochore-specific correlations. CONCLUSION: We consider that the more parsimonious explanation for our results is that GC content is subjected to the action of both weak selection and BGC in the human genome with features such as nucleosome positioning or chromatin conformation possibly representing the final target of selective processes. This view might reconcile previous contrasting findings and add some theoretical background to recent evidences suggesting that GC content domains display different behaviors with respect to highly regulated biological processes such as developmentally-stage related gene expression and programmed replication timing during neural stem cell differentiation

    The heptad repeat region is a major selection target in MERS-CoV and related coronaviruses

    Get PDF
    Middle East respiratory syndrome coronavirus (MERS-CoV) originated in bats and spread to humans via zoonotic transmission from camels. We analyzed the evolution of the spike (S) gene in betacoronaviruses (betaCoVs) isolated from different mammals, in bat coronavirus populations, as well as in MERS-CoV strains from the current outbreak. Results indicated several positively selected sites located in the region comprising the two heptad repeats (HR1 and HR2) and their linker. Two sites (R652 and V1060) were positively selected in the betaCoVs phylogeny and correspond to mutations associated with expanded host range in other coronaviruses. During the most recent evolution of MERS-CoV, adaptive mutations in the HR1 (Q/R/H1020) arose in camels or in a previous host and spread to humans. We determined that different residues at position 1020 establish distinct inter-and intra-helical interactions and affect the stability of the six-helix bundle formed by the HRs. A similar effect on stability was observed for a nearby mutation (T1015N) that increases MERS-CoV infection efficiency in vitro. Data herein indicate that the heptad repeat region was a major target of adaptive evolution in MERS-CoV-related viruses; these results are relevant for the design of fusion inhibitor peptides with antiviral function

    Maternal sensitivity buffers the association between SLC6A4 methylation and socio-emotional stress response in 3-month-old full term, but not very preterm infants

    Get PDF
    Background: Very preterm (VPT) infants are hospitalized in Neonatal Intensive Care Units (NICUs) and are exposed to life-saving procedures eliciting pain-related stress. Recent research documented that pain-related stress might result in birth-to-discharge increased methylation of serotonin transporter gene (SLC6A4) in VPT infants, leading to poorer stress regulation at 3 months of age in VPT infants compared to their full-term (FT) counterparts. Maternal sensitivity is thought to support infants' stress response, but its role in moderating the effects of altered SLC6A4 methylation is unknown. Main aim: To assess the role of maternal sensitivity in moderating the association between altered SLC6A4 methylation and stress response in 3-month-old VPT and FT infants. Methods: 53 infants (27 VPTs, 26 FTs) and their mothers were enrolled. SLC6A4 methylation was obtained from peripheral blood samples at NICU discharge for VPT infants and from cord blood at birth for FT infants. At 3 months (age corrected for prematurity), both groups participated to the face-to-face still-face (FFSF) paradigm to measure both infants' stress response (i.e., negative emotionality) and maternal sensitivity. Results: Maternal sensitivity did not significantly differ between VPT and FT infants' mothers. In VPT infants, higher SLC6A4 methylation at hospital discharge associates with higher negative emotionality during the FFSF. In FT infants, SLC6A4 methylation and maternal sensitivity significantly interacted to predict stress response: a positive significant association between SLC6A4 methylation and negative emotionality emerged only in FT infants of less-sensitive mothers. Discussion: Although no differences emerged in caregiving behavior in the two groups of mothers, maternal sensitivity was effective in moderating the effects of SLC6A4 methylation in FT infants, but not in VPT infants at 3 months. Speculatively, the buffering effect of maternal sensitivity observed in FT infants was disrupted by the altered early mother-infant contact due to NICU stay of the VPT group. These findings indirectly support that the effects of maternal sensitivity on infants' socio-emotional development might be time dependent, and that mother-infant interventions in the NICU need to be provided precociously within a narrow sensitive period after VPT birth
    • …
    corecore