235 research outputs found

    Substructure recovery by 3D Discrete Wavelet Transforms

    Get PDF
    We present and discuss a method to identify substructures in combined angular-redshift samples of galaxies within Clusters. The method relies on the use of Discrete Wavelet Transform (hereafter DWT) and has already been applied to the analysis of the Coma cluster (Gambera et al. 1997). The main new ingredient of our method with respect to previous studies lies in the fact that we make use of a 3D data set rather than a 2D. We test the method on mock cluster catalogs with spatially localized substructures and on a N-body simulation. Our main conclusion is that our method is able to identify the existing substructures provided that: a) the subclumps are detached in part or all of the phase space, b) one has a statistically significant number of redshifts, increasing as the distance decreases due to redshift distortions; c) one knows {\it a priori} the scale on which substructures are to be expected. We have found that to allow an accurate recovery we must have both a significant number of galaxies (≈200\approx 200 for clusters at z≄0.4\geq 0.4 or about 800 at z≀\leq 0.4) and a limiting magnitude for completeness mB=16m_B=16. The only true limitation to our method seems to be the necessity of knowing {\it a priori} the scale on which the substructure is to be found. This is an intrinsic drawback of the method and no improvement in numerical codes based on this technique could make up for it.Comment: Accepted for publication in MNRAS. 7 pages, 2 figure

    Properties of galaxy halos in Clusters and Voids

    Get PDF
    We use the results of a high resolution N-body simulation to investigate the role of the environment on the formation and evolution of galaxy-sized halos. Starting from a set of constrained initial conditions, we have produced a final configuration hosting a double cluster in one octant and a large void extending over two octants of the simulation box. We present results for two statistics: the relationship between 1-D velocity dispersion and mass and the probability distribution of the spin parameter P(λ)P(\lambda). The \svm relationship is well reproduced by the Truncated Isothermal Sphere (TIS) model introduced by Shapiro et al. (1999), although the slope is different from the original prediction. A series of \svm relationships for different values of the anisotropy parameter ÎČ\beta, obtained using the theoretical predictions by Lokas and Mamon (2001) for NFW density profiles are found to be only marginally consistent with the data. Using some properties of the equilibrium TIS models, we construct subsamples of {\em fiducial} equilibrium TIS halos from each of the three subregions, and we study their properties. For these halos, we do find an environmental dependence of their properties, in particular of the spin parameter distribution P(λ)P(\lambda). We study in more detail the TIS model, and we find new relationships between the truncation radius and other structural parameters. No gravitationally bound halo is found having a radius larger than the critical value for gravithermal instability for TIS halos (\rt ≄34.2r0\ge 34.2 r_{0}, where r0r_{0} is the core radius of the TIS solution). We do however find a dependence of this relationship on the environment, like for the P(λ)P(\lambda) statistics. These facts hint at a possible r\^{o}le of tidal fields at determining the statistical properties of halos.Comment: 12 pages, 14 figures. Accepted by MNRAS. Adopted an improved algorithm for halo finding and added a comparison with NFW model

    A 3-D wavelet analysis of substructure in the Coma cluster: statistics and morphology

    Full text link
    Evidence for clustering within the Coma cluster is found by means of a multiscale analysis of the combined angular-redshift distribution. We have compiled a catalogue of 798 galaxy redshifts from published surveys from the region of the Coma cluster. We examine the presence of substructure and of voids at different scales ranging from ∌1to∌16h−1\sim 1 to \sim 16 h^{-1} Mpc, using subsamples of the catalogue, ranging from cz=3000cz=3000 km/s to cz=28000cz=28000 km/s. Our substructure detection method is based on the wavelet transform and on the segmentation analysis. The wavelet transform allows us to find out structures at different scales and the segmentation method allows us a quantitative statistical and morphological analysis of the sample. From the whole catalogue we select a subset of 320 galaxies, with redshifts between cz=5858 km/s and cz=8168 km/s that we identify as belonging to the central region of Coma and on which we have performed a deeper analysis, on scales ranging from 180h−1180 h^{-1} kpc to 1.44h−11.44 h^{-1} Mpc. Our results are expressed in terms of the number of structures or voids and their sphericity for different values of the threshold detection and at all the scales investigated. According to our analysis, there is strong evidence for multiple hierarchical substructure, on scales ranging from a few hundreds of kpc to about 4h−14 h^{-1} Mpc. The morphology of these substructures is rather spherical. On the scale of 720h−1720 h^{-1} kpc we find two main subclusters which where also found before, but our wavelet analysis shows even more substructures, whose redshift position is approximatively marked by these bright galaxies: NGC 4934 & 4840, 4889, 4898 & 4864, 4874 & 4839, 4927, 4875.Comment: 24 pages, 6 figures. ApJ (Main Journal), accepted for publication. Added one section on statistical tests and slightly modified text and abstrac

    A Parallel Tree code for large Nbody simulation: dynamic load balance and data distribution on CRAY T3D system

    Get PDF
    N-body algorithms for long-range unscreened interactions like gravity belong to a class of highly irregular problems whose optimal solution is a challenging task for present-day massively parallel computers. In this paper we describe a strategy for optimal memory and work distribution which we have applied to our parallel implementation of the Barnes & Hut (1986) recursive tree scheme on a Cray T3D using the CRAFT programming environment. We have performed a series of tests to find an " optimal data distribution " in the T3D memory, and to identify a strategy for the " Dynamic Load Balance " in order to obtain good performances when running large simulations (more than 10 million particles). The results of tests show that the step duration depends on two main factors: the data locality and the T3D network contention. Increasing data locality we are able to minimize the step duration if the closest bodies (direct interaction) tend to be located in the same PE local memory (contiguous block subdivison, high granularity), whereas the tree properties have a fine grain distribution. In a very large simulation, due to network contention, an unbalanced load arises. To remedy this we have devised an automatic work redistribution mechanism which provided a good Dynamic Load Balance at the price of an insignificant overhead.Comment: 16 pages with 11 figures included, (Latex, elsart.style). Accepted by Computer Physics Communication

    A Work- and Data-Sharing Parallel Tree N-body Code

    Get PDF
    We describe a new parallel N-body code for cosmological simulations. The code is based on a work- and data sharing scheme, and is implemented within the Cray Research Corporation's CRAFT programming environment. Different data distribution schemes have been adopted for bodies' and tree's structures. Tests performed for two different types of initial distributions show that the performance scales almost ideally as a function of the size of the system and of the number of processors. We discuss the factors affecting the absolute speedup and how it can be increased with a better tree's data distribution scheme.Comment: 16 pages, 8 figures. Uses elsart.sty and epsf.sty. Accepted for publication in Computer Physics Communication

    Bibliometrics of systematic reviews : analysis of citation rates and journal impact factors

    Get PDF
    Background: Systematic reviews are important for informing clinical practice and health policy. The aim of this study was to examine the bibliometrics of systematic reviews and to determine the amount of variance in citations predicted by the journal impact factor (JIF) alone and combined with several other characteristics. Methods: We conducted a bibliometric analysis of 1,261 systematic reviews published in 2008 and the citations to them in the Scopus database from 2008 to June 2012. Potential predictors of the citation impact of the reviews were examined using descriptive, univariate and multiple regression analysis. Results: The mean number of citations per review over four years was 26.5 (SD +/-29.9) or 6.6 citations per review per year. The mean JIF of the journals in which the reviews were published was 4.3 (SD +/-4.2). We found that 17% of the reviews accounted for 50% of the total citations and 1.6% of the reviews were not cited. The number of authors was correlated with the number of citations (r = 0.215, P =5.16) received citations in the bottom quartile (eight or fewer), whereas 9% of reviews published in the lowest JIF quartile (<=2.06) received citations in the top quartile (34 or more). Six percent of reviews in journals with no JIF were also in the first quartile of citations. Conclusions: The JIF predicted over half of the variation in citations to the systematic reviews. However, the distribution of citations was markedly skewed. Some reviews in journals with low JIFs were well-cited and others in higher JIF journals received relatively few citations; hence the JIF did not accurately represent the number of citations to individual systematic reviews

    Covid-19 patient management in outpatient setting: A population-based study from southern italy

    Get PDF
    Evidence on treatments for early-stage COVID-19 in outpatient setting is sparse. We explored the pattern of use of drugs prescribed for COVID-19 outpatients’ management in Southern Italy in the period February 2020–January 2021. This population-based cohort study was conducted using COVID-19 surveillance registry from Caserta Local Health Unit, which was linked to claims databases from the same catchment area. The date of SARS-CoV-2 infection diagnosis was the index date (ID). We evaluated demographic and clinical characteristics of the study drug users and the pattern of use of drugs prescribed for outpatient COVID-19 management. Overall, 40,030 patients were included in the analyses, with a median (IQR) age of 44 (27–58) years. More than half of the included patients were asymptomatic at the ID. Overall, during the study period, 720 (1.8%) patients died due to COVID-19. Azithromycin and glucocorticoids were the most frequently prescribed drugs, while oxygen was the less frequently prescribed therapy. The cumulative rate of recovery from COVID-19 was 84.2% at 30 days from ID and it was lower among older patients. In this study we documented that the drug prescribing patterns for COVID-19 treatment in an outpatient setting from Southern Italy was not supported from current evidence on beneficial therapies for early treatment of COVID-19, thus highlighting the need to implement strategies for improving appropriate drug prescribing in general practice
    • 

    corecore