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A B S T R A C T

We use the results of a high-resolution N-body simulation to investigate the role of the

environment on the formation and evolution of galaxy-sized haloes. Starting from a set of

constrained initial conditions, we have produced a final configuration hosting a double cluster

in one octant and a large void extending over two octants of the simulation box. In this paper

we concentrate on gravitationally bound galaxy-sized haloes extracted from these two regions

and from a third region hosting a single, relaxed cluster without substructure. Exploiting the

high mass resolution of our simulation ðmbody ¼ 2:1 £ 109 h21 M(Þ, we construct halo

samples probing more than two decades in mass, starting from a rather small mass threshold:

5 £ 1010 h21 M( # M. We present results for two statistics: the relationship between one-

dimensional velocity dispersion sv and mass M0 and the probability distribution of the spin

parameter P(l), and for three different group finders. The sv–M0 relationship is well

reproduced by the truncated isothermal sphere (TIS) model introduced by Shapiro et al.,

although the slope is different from the original prediction. A series of sv–M0 relationships

for different values of the anisotropy parameter b, obtained using the theoretical predictions

by Łokas & Mamon for Navarro et al. density profiles, are found to be only marginally

consistent with the data. Using some properties of the equilibrium TIS models, we construct

subsamples of fiducial equilibrium TIS haloes from each of the three subregions, and we

study their properties. For these haloes, we do find an environmental dependence of their

properties, in particular of the spin parameter distribution P(l). We study the TIS model in

more detail, and we find new relationships between the truncation radius and other structural

parameters. No gravitationally bound halo is found having a radius larger than the critical

value for gravithermal instability for TIS haloes ðrt $ 34:2r0, where r0 is the core radius of

the TIS solution). We do, however, find a dependence of this relationship on the environment,

like for the P(l) statistics. These facts hint at a possible role of tidal fields in determining the

statistical properties of haloes.

Key words: methods: N-body simulations – galaxies: formation – galaxies: haloes – large-

scale structure of Universe.

1 I N T R O D U C T I O N

One of the distinguishing features of any scenario for the formation

of the large-scale structure of the Universe within the cold dark

matter (CDM) cosmological model is represented by the

hierarchical clustering paradigm for the assembly of gravitation-

ally bound structures (White 1996, 1997). In its simplest form, the

idea of hierarchical clustering implies that the growth of haloes

proceeds by accretion of smaller units from the surrounding

environment, either by infall (Gunn & Gott 1972) or by a series of

‘merging’ events (White & Rees 1978), whereby the subunits are

accreted in a discontinuous way, or (more likely) by a combination

of the two. In the first case the typical halo profiles evolvePAffiliated to: Theoretical Astrophysics Centre, Copenhagen, Denmark.
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adiabatically, while in the merging scenario each merging ‘event’

will induce some transients in the characteristic properties which in

turn will induce some evolution in the typical profiles, after the

subunits have been accreted and destroyed. In either case, one

expects that relaxation processes should drive the evolution

towards a quasi-equilibrium state on a dynamical time-scale, a

state characterized by relationships among global quantities related

to the halo, like its mass, density, velocity dispersion sv, and

possibly others. Recently considerable attention has been devoted

to the study of one of these relationships: the radial dependence of

the (spherically averaged) density, also known as the density

profile. Unfortunately the density profile is a very difficult tool to

use when trying to characterize the statistical properties of halo

populations, because the predictions of different models of halo

formation differ only in the behaviour in the central parts, where

the statistics are typically poor. Less attention has been paid to

another global quantity, namely the velocity dispersion, and to its

relationship with other global quantities, like the mass. The

velocity dispersion enters the second-order Jeans equation, while

the density profile is described by the zeroth-order Jeans equation

(Binney & Tremaine 1987). For this reason it contains different

physical information from the density profile. Recently Bryan &

Norman (1998) have looked at the sv–M0 relationship for clusters,

and they find a good agreement with the standard, singular

isothermal sphere model as far as the slope of the relationship is

concerned. Also Knebe & Müller (1999) looked at this

relationship, using a different code. Halo equilibrium models

make predictions about the sv–M0 relationship, but these are

difficult to compare with observations, because some of the

involved quantities (e.g. the velocity dispersion itself) are not

directly deducible from observations. They can, however, be

studied with N-body simulations, and one of the purposes of this

paper will be to show that the sv–M0 relationship can be used to

discriminate among different halo equilibrium models.

A second problem that we will study concerns the dependence of

halo properties on the environment within which they form. In both

the hierarchical clustering scenarios mentioned above one could

imagine that the properties of the haloes do depend on the

environment. For instance, the dynamics of the infall process could

be affected by the average overdensity of the environment within

which the halo grows (Gunn 1977), or by its shear (Buchert,

Kerscher & Sicka 1999; Takada & Futamase 1999). Also typical

quantities related to the merging, like the frequency of merging

events, could intuitively be affected by the average density of the

environment, at least for galaxy-sized haloes forming within

clusters. High-resolution N-body simulations (e.g. Moore et al.

1999) show that most of the galaxies lying in the central (i.e.

virialized) parts of clusters do not easily reach a velocity larger

than the escape velocity, so they are bound to the cluster for the

largest part of their evolutionary history, and consequently form in

an overdense environment. It would then be interesting to try to

understand whether there are systematic differences between

haloes forming in clusters and in voids.

Some of these issues have been recently discussed in the

literature. Lemson & Kauffmann (1999) have analysed the

dependence of various statistical properties, including the spin

probability distribution, on the environment, and found no

evidence for any dependence apart from the extent of the mass

spectrum. They divide their haloes into groups according to the

overdensity of the environment within which they are found, and

show that the scatter diagrams between different quantities are

indistinguishable among the different groups. In the present study,

we follow a different strategy. We study a simulation obtained from

a constrained set of initial conditions, in order to get a few clusters

(and, in particular, a double cluster) and a large void within the

same simulation box. We then extract our haloes from three

spatially disjoint regions: one containing a double cluster, a second

one containing a single cluster, and a third one containing the void.

This is in some sense complementary to the procedure which

Lemson & Kauffmann seem to have followed, because our haloes

are grouped according to the spatial distribution, rather than

according to the overdensity, so they are grouped according to the

environment within which they form.

Very recently Gardner (2000) presented a study of the spin

probability distribution for six different cosmological models and

environments. He finds a difference between the distributions of

haloes resulting from recent mergers and haloes that did not

experience mergers, almost independently of the environment

within which they form. This could have significant consequences

for the construction of merger histories, and, ultimately for the

semi-analytical modelling of galaxies. Similar results have been

recently obtained by Vitvitska et al. (2001).

The plan of the paper is as follows. In Section 2 we describe the

numerical setup of the simulations and the algorithm adopted to

identify haloes. In Section 3 we describe the halo equilibrium

models with which we compare the results of our simulation, and

in Section 4 we show the results of this comparison and discuss

their physical interpretation. Finally, in the conclusions we

summarize our results and suggest some directions for future

studies.

In the following we will always assume a V ¼ 1 standard CDM

model, with a Hubble constant H0 ¼ 100 h km s21 Mpc21, and

h ¼ 0:5. All lengths, unless explicitly stated, are assumed to be

comoving.

2 S I M U L AT I O N S

The simulation from which the data have been extracted has been

performed using FLY (Becciani et al. 1997, 1998), a parallel,

collisionless treecode optimized for shared memory and/or

clustered computing systems. FLY deals with periodic boundary

conditions using a standard Ewald summation technique

(Hernquist, Bouchet & Suto 1991). The algorithm adopted is the

octal-tree algorithm of Barnes and Hut (Barnes & Hut 1986), with

some modifications (‘grouping’ of cells belonging to the lists of

nearby particles: Barnes 1987) during the phase of tree walking.

These changes have a negligible impact on the overall numerical

accuracy, as shown elsewhere (Becciani, Antonuccio-Delogu &

Gambera 2000), but they have a strong positive impact on parallel

performance and scaling.

We have performed two simulations starting from the same

initial conditions. In both cases the underlying cosmological model

is a standard CDM (SCDM) model, with V0 ¼ 1, s8 ¼ 0:9. The

main reason for this choice lies in the fact that the specific

prediction for the sv–M0 statistics that we consider in the next

sections was done for this particular cosmological model. We plan

to extend our work to other cosmological models in future.

Each simulation used 2563 particles, and the box size was

50 h 21 Mpc, so that the mass of each particle is mpart ¼

2:07 £ 109 h 21 M(: The simulations were designed to study the

evolution of a Coma-like cluster, and for this purpose constrained

initial conditions were prepared, changing only the softening

length, which was fixed to e ¼ 10 and 5 h 21 kpc, respectively. As

far as the results presented in this paper are concerned, there are no

8 V. Antonuccio-Delogu et al.
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differences among these two simulations, so for the rest of this

paper we will concentrate only on the simulation with the largest

softening length, which we designate in the following as 16ML_1.

Constrained initial conditions were prepared using the

implementation of the constrained random field algorithm of

Hoffman & Ribak (1991) by van de Weygaert & Bertschinger

(1996). We took the same initial conditions as adopted in one of the

simulations from the catalogue of van Kampen & Katgert (1997).

More specifically, we constrained the initial conditions to have a

peak at the centre of the simulation box, with height 3.04s,

Gaussian smoothed at a scale of 6 h 21 Mpc, and a 22s void

centred at (15, 0, 210). The final configuration is shown in Fig. 1.

In order to study the environmental dependence of the properties of

galaxy-sized halo populations, we selected three regions within the

computational box, which we call DOUBLE, SINGLE and VOID.

All the three are cubical with centres and sizes as specified in

Table 1. The DOUBLE region hosts a double cluster, with two

large parts in the act of merging by the end of the simulation (see

Fig. 2). The SINGLE region hosts a more relaxed cluster without

any apparent substructure. Finally, we have included in the analysis

a significantly underdense region, the VOID, which is more

extended than the former two, so as to contain enough haloes to

allow reasonable statistics.

2.1 Finding haloes

Various methods have been devised to extract haloes from the

outputs of N-body simulations. Some of these methods make use

only of particle positions, like the standard friends-of-friends

(hereafter FOF) and the various versions of the adaptive FOF, while

others take into account also particle velocities (e.g. SKID:

Governato et al. 1997) and/or environmental properties like local

densities (like HOP: Eisenstein & Hut 1998). Most of the results

we will present later have been obtained using SKID because it

selects gravitationally bound groups of particles. In short, SKID

first builds catalogues of groups using a standard FOF algorithm,

selecting only particles lying within regions with density larger

than a critical value dcrit. It then computes the escape velocity of

each particle and discards those particles having an rms velocity

Figure 1. Snapshot of the simulation box at the end of the simulation. The scale of grey corresponds to density in logarithmic units. The large void is clearly

seen in projection extending over the lower left octant.

Table 1. Properties of the analysed regions.

Region x y z L Number of haloes

DOUBLE 15 12.5 7.5 10 827
SINGLE 12 218 4 10 786
VOID 210 210. 210. 20 609

All lengths are in h 21 Mpc. From left to right, columns are as
follows: label of the region, x, y, and z coordinates of its centre, size
of the region, total number of haloes found.

Properties of galaxy haloes in clusters and voids 9
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larger than the escape velocity. This ‘pruning’ procedure should

then leave only those particles that are actually bound to the group,

discarding those ‘background’ particles that find themselves by

accident at a given time within it. The initial linking length of the

FOF phase determines the approximate size of the groups that we

are considering. We assumed a linking length of 100 h 21 kpc,

corresponding to the typical size of a galaxy-sized object at the

present epoch. The softening length for the calculation of the

gravitational potential was assumed to be the same as in the

simulation, and the critical density dcrit was set equal to

178=ð1þ zÞ, the value for non-linear collapse in the Gunn & Gott

collapse model, so that only particles from genuinely non-linearly

collapsed shells should be included.

Following a suggestion by the anonymous referee, we have

also adopted two more halo finders to check the robustness of

the results: an adaptive FOF method devised by van Kampen &

Katgert (1997) and a modified version of SKID which should

avoid the problems posed by the original version. This particular

adaptive FOF halo finder selects only those haloes that are

virialized, by specifically testing for virialization. Concerning the

second method, we have modified SKID only in that part which

generates the input group list which is subsequently ‘pruned’ of

the non-gravitationally bound particles: in place of a standard

FOF (as in the original version of SKID) we have adopted HOP

(Eisenstein & Hut 1998) as input group finder. As we will see

later, some of the relationships that we find do depend on

the group finder adopted, but those relationships holding for the

equilibrium truncated isothermal sphere haloes are not affected

by this. All the results that we present in the following are for

the final redshift of the simulation, z ¼ 0:0047, unless otherwise

stated.

3 H A L O E Q U I L I B R I U M M O D E L S

The internal properties of haloes formed by gravitational collapse

can be described by looking at correlations among different

physical quantities. The density profile has often been used to study

the properties of relaxed, virialized haloes, particularly since the

finding by Navarro, Frenk & White (1996) that this profile has a

universal character when expressed in dimensionless units.

However, the density profile can be reliably determined only for

haloes having enough particles in each shell to minimize the

statistical fluctuations. For instance, Navarro, Frenk & White

(1997) considered only eight haloes extracted from a low-

resolution simulation and re-simulated with a higher mass

resolution.

Typical N-body simulations on cluster scales tend to produce a

large amount of haloes, the density profile of which cannot be

reliably determined, because each of them contains on average

fewer than 105 particles. For this reason we have chosen to study

relationships involving global halo properties. This choice is not

free from potential problems: systematic biases can be introduced

by the particular group finder adopted. Consider for instance SKID,

which works by stripping out gravitationally unbound particles

from haloes built using FOF: the group catalogues so produced

tend to be more biased towards less massive haloes than catalogues

produced using FOF. We have therefore decided to adopt three

different group finders, in order to be able to understand the role of

these systematic factors. We have also considered two different

statistics to characterize the properties of dark matter haloes, and

particularly their equilibrium properties at the end of the

simulation: the internal one-dimensional velocity dispersion–

mass relationship ðsv 2 M0Þ and the spin probability distribution

Figure 2. The region of the DOUBLE cluster.

10 V. Antonuccio-Delogu et al.
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P(l). Theoretical predictions concerning both of them are available

in the literature. In particular, we will compare the results from our

N-body simulations with four models: the standard uniform

isothermal sphere (SUS) model (see e.g. Padmanabhan 1993, ch. 8,

for a detailed treatment), the truncated isothermal sphere (TIS)

model recently introduced by Shapiro, Iliev & Raga (1999), the

‘peak-patch’ (PP) Monte Carlo model by (Bond & Myers (1996a),

and a model derived from the Navarro et al. (1996, 1997) (hereafter

NFW) density profiles. The first two models predict a sv–M0

relationship given by

sv ¼ cf M
1=3
12 ð1þ zcollÞ

1=2 h 1=3 km s21; ð1Þ

where the subscript f ; SUS or TIS, while for the PP model the

relation is given in Bond & Myers (1996b):

sv ¼ cPPM0:29
12 ð1þ zcollÞ

1=2 h 1=3 km s21: ð2Þ

In the equations above M12 is the mass in units of 1012 M( and zcoll

is the collapse redshift. The coefficients for these cases are given by

cSUS;TIS;PP ¼ ð71:286; 104:69; 117:60Þ ð3Þ

respectively. We restrict our attention to these four models because

the physical ingredients that enter in their formulation are very

different, and encompass a sufficiently wide range among all the

possible non-linear collapse and virialization mechanisms. This

wide choice reflects our generally poor level of understanding of

the non-linear physics of gravitational collapse, and of its

dependence on the local environment and on other properties

like the merging history of the substructures.

The SUS model is based on the spherical non-linear collapse

model (Gunn & Gott 1972). In this model the collapse towards

a singularity of a spherically symmetric shell of matter in a

cosmological background is halted when its radius reaches a value

of half the maximum expansion radius. The velocity dispersion is

then fixed by imposing the condition of energy conservation, which

must hold in the case of collisionless dark matter such as that

envisaged here. The TIS model also considers the highly idealized

case of a spherically symmetric configuration, but assumes that the

final, relaxed system is described by an isothermal, isotropic

distribution function and that the density profile is truncated at

a finite radius. Shapiro et al. (1999) have shown that this

configuration could arise from a top-hat collapse of an isolated

spherical density perturbation if, as shown by Bertschinger (1985),

the dimensionless region of shell crossing almost coincides with

the region bounded by the outer shock in an ideal gas accretion

collapse with the same mass (in an V ¼ 1 CDM model). The

truncation radius is then assumed to coincide with the region of

shell crossing, and this allows them to specify the model

completely.

The PP model introduced by Bond & Myers (1996a) is more

general than the SUS model, in that it includes a more realistic

collapse model where deviations from spherical symmetry are

taken into account. The density perturbation is approximated as an

axisymmetric homogeneous spheroid. Coupling between the

deformation tensor and the external and internal torques is

consistently taken into account up to a few first orders, and Monte

Carlo realizations are used to build up catalogues of haloes. These

have been compared with the N-body simulations of Couchman

(1991) in order to normalize the statistics properly. Note that

equation (2) is a best-fitting relationship and holds for a range of

halo mass ð2:5 £ 1014 # Mh # 5 £ 1015 M(Þmuch larger than that

considered here. None the less, we include it in our comparison

because the physical model on which it is based is significantly

different from the other models we consider.

Finally, we have considered a model for the sv–M0 statistics

consistent with the NFW density profile, which was recently

derived by Łokas & Mamon (2001) by solving the second-order

Jeans equation:

1

r

d

dr
ðrs2

r Þ þ 2b
s2

r

r
¼ 2

dF

dr
; ð4Þ

where b ¼ 1 2 s2
uðrÞ/s

2
r ðrÞ quantifies the anisotropy of the

velocity dispersion. For an NFW density profile we have

rNFWðrÞ ; rNFWðsÞ ¼
r0

cc 2gðcÞ

3

1

sð1þ csÞ2
; ð5Þ

FNFWðsÞ ¼ 2
GMVIR

rVIR

gðcÞ
lnð1þ csÞ

s
; ð6Þ

where we have defined rVIR and MVIR as the virialization radius and

mass, respectively, s ¼ r/rVIR, c ¼ cðM; zÞ is the concentration

parameter and gðcÞ ¼ 1=½lnð1þ cÞ2 c/ð1þ c�. Equation 4 can be

solved by quadrature, and the solution finite in the limit r ! 1 is

s2
r

V2
v

ðs;b ¼ constantÞ ¼ gðcÞð1þ csÞ2s 122b

£

ð1

s

s 2b23lnð1þ csÞ

ð1þ csÞ2
2

cs 2b22

ð1þ csÞ3

� �
ds: ð7Þ

Note that we have always chosen as critical threshold for our group

finders the virialization overdensity ðd $ dcrit ¼ 178Þ, so the

quantities rVIR and MVIR are the actual radius and mass found by

the group finders for each halo.

In order to make use of equation (7) we have yet to specify the

dependence of the concentration parameter on the mass at the final

redshift: c ¼ cðM; z ¼ 0Þ. We adopt the relationship provided by

Bullock et al. (2001), by running their code CVIR for the relevant

cosmological model. In the mass range in which we are interested

ð5 £ 1010 # M/M( # 5 £ 1013Þ we find a power-law fit:

cðM; z ¼ 0Þ ¼ 472:063 £ M 20:127^0:01. Finally, in order to make

a proper comparison with the quantity computed by the group

finder, we evaluate the mass-averaged velocity dispersion:

s2
v ¼

4p
Ð 1

0
s2

v;NFWðsÞrðsÞs
2 ds

Mð1Þ
; ð8Þ

where we have defined

s2
v;NFW ¼ s2

r þ s2
u ¼ ð2 2 bÞs2

r

and

Mð1Þ ¼ 4p

ð1

0

rðsÞs 2 ds:

4 S TAT I S T I C A L P R O P E RT I E S

4.1 The sv–M0 relation

In Fig. 3 we show plots of the final sv–M0 relationship for galaxy-

sized haloes in the DOUBLE, SINGLE and VOID regions,

respectively, obtained using SKID. The most striking difference is

probably the different character of haloes in the VOID region when

compared with the clustered regions. Haloes in VOID have a much

smaller dispersion around the mean than haloes in the clustered

Properties of galaxy haloes in clusters and voids 11
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regions, and the distribution is almost symmetric with respect to

the best-fitting approximation. Haloes in the DOUBLE region have

a larger dispersion and they do show an asymmetry in the

distribution around the best-fitting solution, i.e. an excess of low-

mass haloes at low sv. The latter point is useful to understand the

potential systematic effects introduced by a particular group finder.

In Fig. 4 we show the sv–M0 relationship for the DOUBLE region

obtained by using the two other group finders mentioned above. As

is evident, the excess of low-mass haloes is only an artefact

introduced by SKID, which makes use of an FOF algorithm to

build up an input list of groups. The main results of the next

sections, however, do not depend on the particular group finder

adopted, because we will select subsamples of haloes which can be

regarded as equilibrium TIS haloes, and for them the slope of the

sv–M0 relationship is independent of the particular group finder

initially adopted.

A more important difference is evident from a comparison

between clustered and void regions. Haloes in VOID have a larger

mass extent (a property already noted by Lemson & Kauffmann

1999) and also the slope of the sv–M0 relation seems to be larger

than for the other two cases.

In Fig. 5 we show a comparison with some theoretical predictions

for NFW density profiles. In order to apply equations (6) and (7) we

have still to specify a relationship between the virial radius and the

corresponding mass, which enters into equation (6). In Fig. 6 we can

see that there is a clear relationship between the truncation radius zt

and the mass, but we have to find a relationship between rt and M.

We do this by fitting a power-law relationship to the data obtained

from the simulations (Fig. 7), which shows that the slope depends

significantly on the environment. As is evident from Fig. 5, none of

the models fits the data adequately. Note that there is only a slight

difference between isotropic ðb ¼ 0Þ and anisotropic ðb ¼ 0:5Þ

models. Only if we allow for an unrealistically low value of the

slope of the rVIR–MVIR relationship do we get a limited agreement

for the DOUBLE cluster, but not for the other two regions.

The slopes of the sv–M0 relationship for different regions and

using different group finders seem to be consistent with each other,

within the errors (Table 2). None of the theoretical models that we

are considering, however, seems to offer a good fit for all the cases.

The TIS model seems to give a good fit for the DOUBLE region

and for the SKID group finder, but when we use the modified SKID

group finder, which produces a sample over a more extended mass

interval, we see that the original TIS model does not offer a good fit

(Fig. 4).

Figure 3. One-dimensional velocity dispersion versus mass for haloes

extracted from the three regions. The three fitting curves correspond to the

three cases considered in the text: truncated isothermal sphere (continuous

line), Bond & Myers (1996b) (dotted line), and standard uniform sphere

(dashed line). Note the larger mass extent for haloes in the VOID. In all the

cases, the slope is larger than predicted by models, although within clusters

the statistical uncertainty is large.

Figure 4. One-dimensional velocity dispersion versus mass for the

DOUBLE cluster region; haloes selected using the adaptive FOF and

modified SKID with HOP input group finders. The same parameters as

adopted for SKID in Fig. 3 are adopted. The best-fitting power law for the

plot in the upper figure has a slope a ¼ 0:039 ^ 0:05. The symbols for the

fitting lines are as in Fig. 3.

Figure 5. The sv–M0 relationship for three models based on the NFW

density profile. Continuous line: b ¼ 0, slope of the rVIR–MVIR relation

given by a ¼ amean. Dotted line: b ¼ 0:5, a ¼ amean. Dashed line: b ¼ 0,

a ¼ amean 2 Da (i.e. the 1s limit).

12 V. Antonuccio-Delogu et al.
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Note that the rms uncertainty of sv in Figs 3–5 is less than

30 km s21, a value much lower than that found by Knebe & Müller

(1999) in their simulations (see their fig. 3). We believe that this is a

consequence of the larger mass and force resolution of our

simulation, and also of the use of a larger dynamic range than

adopted by previous authors.

Generally speaking, a power law seems to offer a good fit for all

three regions (although with different ranges for the three regions),

but in order to determine the slope one must probably go a step

further in modelling the physical state of these haloes. In the next

section we will explore in more detail the properties of TIS haloes,

and we will focus our attention on their statistical properties.

4.2 Comparison with the TIS model

We will now consider the possibility of obtaining a reasonable fit of

the sv–M0 relationship by modifying the minimum-energy TIS

model. We will then present here some more features of this model.

Following Shapiro et al. (1999), the TIS solution is obtained by

imposing a finite truncation radius rt on an isothermal, spherically

symmetric collisionless equilibrium configuration. Shapiro et al.

define a typical radius:

r0 ¼
sv

ð4pGr0Þ
1=2

; ð9Þ

where r0 is the central density (TIS models are non-singular).

Combining the Poisson and the Jeans equilibrium equations, and

making the hypothesis of isothermality for the distribution

function, they obtain an equation for the dimensionless density

(see Shapiro et al. 1999, equation 29):

d

dz
z 2 dðln ~rÞ

dz

� �
¼ 2 ~rz 2; ð10Þ

where we have used the definitions

~r ¼
r

r0

; z ¼
r

r0

:

Shapiro et al. have shown that non-singular solutions of equation

(10) form a one-parameter family depending only on zt ¼ rt/r0.

The total mass is then given by

M0 ¼ MðrtÞ ¼

ðrt

0

4prðrÞr 2 dr ¼ 4pr0r3
0
~MðztÞ; ð11Þ

where we have defined a dimensionless total mass:

~MðztÞ ¼
1

r0

ðrt

0

dr
r

r0

r

r0

� �2

:

We follow further Shapiro et al. (1999, equation 41) and write the

virial theorem for a collisionless truncated isothermal sphere:

0 ¼ 2K þW þ Sp; ð12Þ

where K ¼ M0kv 2l=2 ; ð3=2ÞM0s
2
v and Sp is the surface pressure

term. In the Appendix we show that, after some simple algebra,

Figure 6. The truncation parameter zt as a function of group mass.

Figure 7. The relationship between truncation radius and mass. Data are

fitted using a power-law relationship: rt ¼ cM a. Least-squares fit values

are: cSINGLE ¼ 1:0789 £ 1021, aSINGLE ¼ 0:2637 ^ 0:1335; cVOID ¼

2:7989 £ 1023; aVOID ¼ 0:3816 ^ 0:0789; cDOUBLE ¼ 7:3451 £ 1022,

aDOUBLE ¼ 0:2791 ^ 0:1193.

Table 2. Least-squares best-fitting parameters for sv

relationship.

Region a Da c0 Method

DOUBLE 0.38 0.08 74.13 SKID
0.39 0.05 87.74 SKID with HOP input
0.42 0.07 72.48 AFOF
0.42 0.03 82.16 TIS selected haloes

SINGLE 0.35 0.04 80.28 SKID
0.37 0.04 82.15 SKID with HOP input
0.42 0.07 71.22 Adaptive FOF

VOID 0.39 0.04 86.81 SKID
0.40 0.04 89.43 SKID with HOP input
0.45 0.05 63.12 Adaptive FOF
0.38 0.02 88.60 TIS selected haloes

a, c0 are the fitting parameters of a power-law fit of the form
sv ¼ c0Ma

12; Da is the rms error associated with a.
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starting from equation (12) one obtains the following relation:

GM0

rts2
v

¼
3 ~MðztÞ2 ~rðztÞ

ztCðztÞ
~MðztÞ ; FðztÞ: ð13Þ

The function C(zt) is specified in the Appendix.

We have already seen that a power-law fit describes the sv–M0

relationship well. Then from equation (13) we deduce that also the

truncation radius rt has a power-law dependence on the total mass:

rt / cðztÞM
122a
0 . Using the values of a from Table 2 we see that the

slope of this relationship should lie within the range 0:22–0:3, i.e.

it should be quite small. In Fig. 7 we plot rt as a function of M0. The

best-fitting values that we find for the slope are inconsistent with

the predictions from the sv–M0 relationship.

The right-hand side of equation (13) depends only on the

dimensionless truncation radius zt, which in the minimum-energy

TIS solution of Shapiro et al. (1999) should be fixed to zt ¼ 29:4.

The function F(zt) has a singularity at z < 0:97, where the

denominator goes to zero (Fig. 8). However, we are interested in

the region zt . 1, where the truncation radius is at least

comparable to the core radius. As is clear from Fig. 8, the function

has a minimum at z < 59:5.

We will look for solutions in the interval 2:91 # zt # 59:5.

Within these limits the function F(z) is monotonically decreasing

and the solution of equation (13) is certainly unique. Note that the

TIS solution is unstable for zt . 34:2 (Antonov 1962; Lynden-Bell

& Wood 1968; Shapiro et al. 1999), so our choice of the upper limit

will allow us to verify a posteriori this prediction. Equation (13)

can be inverted with respect to zt given the left-hand side, because

for each group all the quantities on the left-hand side are computed

by the group finder. As for the truncation radius rt we adopt the

radius of the groups as computed by SKID, which coincides with

the virial radius rVIR.

An interesting feature of the TIS solution, which is evident from

Fig. 8, is that in order to invert equation (13) to find zt, the value of

the left-hand side must lie within a rather small range of values:

2:75 # GM0/rts
2
v # 4:56. As we can see from Fig. 9 for the case of

the DOUBLE region, this is not the case for all the haloes, even for

those haloes closely following the sv–M0 relationship. For

instance, out of 827 haloes identified by SKID within the

DOUBLE region, only 382 lie within the region for which equation

(13) can be inverted. For those haloes for which equation (13) can

be inverted, we are able to determine zt and to compare it with the

predictions of the minimum-energy TIS model. The results of this

exercise give us some insight into the properties of these haloes. In

Fig. 6 we plot the relationship between zt and the mass for haloes in

the VOID and DOUBLE regions (the behaviour of haloes in the

SINGLE region is similar to that of those in DOUBLE). The

difference between halo properties in these two regions is striking.

In the DOUBLE region there is no clear relationship between zt

and mass, but we also do not find a clustering around the value

zt ¼ 29:4, characterizing the minimum-energy TIS solution as

suggested by Shapiro et al. (1999). On the other hand, there seems

to be a relationship between zt and mass for haloes in the VOID

region, although with a rather large dispersion, particularly for

haloes having M0 & 3 £ 1011 h 21 M(.

A very interesting property of haloes in Fig. 6 is that we do not

find haloes having zt $ 34:2, the upper limit for gravothermal

instability for TIS haloes, although our upper limit for the zt values

extends up to zt # 59:5. We do, however, also find a few haloes

having zt , 4:738, the critical value below which the total energy

E ¼ T þ K . 0 and the TIS solution cannot exist (Shapiro et al.

1999). It is important to remember that the haloes we find in a

simulation are not spherical and not even ‘ideal’, being a discrete

realization of some equilibrium state, so the above quoted bounds

cannot be taken literally.

At first sight, it may seem curious that only a fraction of all the

haloes (46 per cent in the DOUBLE and 37 per cent in the VOID,

respectively) have values of sv and M0 for which equation (13) can

be solved. The obvious interpretation is that only a fraction of

haloes have reached equilibrium, even at the end of the simulation;

Figure 8. Plot of F(zt). We start plotting from z ¼ 0:97, where the function

has an absolute maximum. The vertical scale is the same as that adopted in

Fig. 9.

Figure 9. Measured values of GM0/rts
2
v versus mass for the region of the

DOUBLE cluster. Groups marked with a star lie within the allowed region

where solutions of equation (13) exist, and the corresponding value of zt can

be found.
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but it also remains a possibility that these ‘out-of-equilibrium’

haloes relax to an equilibrium state different from any of the three

considered in the present work.

Finally, in Figs 10 and 11 we plot the sv–M0 relation of those

haloes for which a zt can be found, for the DOUBLE and VOID

regions, respectively. Note that for these haloes the intrinsic

dispersion is even smaller than in Figs 3 and 4. These haloes can be

then regarded as very near to a TIS equilibrium state. Note also that

the coefficient of equation (1) for the TIS solution has been

computed for the minimum-energy TIS solution. In fact, from

equation (98) of Shapiro et al. (1999) we see that this coefficient

would depend on z:

s2
v ¼
ð3pGÞ

5

2=3 aðzÞ

aðzÞ2 2
H2=3

0 ð1þ zcollÞM
2=3
0 ; ð14Þ

where aðzÞ ¼ 3 ~MðzÞ/z 3 ~rðzÞ. As we can see from the figures, the

scatter induced by this dependence is very small and less than the

intrinsic Poisson scatter.

4.3 Probability distribution of the spin parameter

The angular momentum distribution is an interesting statistic,

because the halo angular momentum originates from gravitational

interactions between the collapsing region and its environment.

Following Peebles (1971) and Efstathiou & Jones (1979) we will

present results for the distribution of the spin parameter l defined as

l ¼
LjEj

1=2

GM 5=2
; ð15Þ

where L and jEj are the angular momentum and the total energy of

each halo, respectively. The calculation of jEj is not free of

ambiguities, because in order to compute the potential energy W

one should take into account the fact that the halo is not isolated,

i.e. one should also account for the contribution from the

environmental gravitational field, and this is not currently done by

any of the group finders we have adopted. For this reason, we show

in Fig. 12 the spin probability distribution P(l) computed only for

TIS haloes in the three regions, i.e. for those haloes following

equation (13). As we have seen in the preceding paragraphs, these

haloes seem to follow the sv–M0 relationship with a much smaller

scatter than haloes selected by any group finder, so we regard them

as our fiducial equilibrium haloes. Combining equations (44) and

(45) from Shapiro et al. (1999) we find that for a TIS halo the total

energy E is connected to the potential W by

E ¼ 2
2 2 a

2ða 2 1Þ
W : ð16Þ

The potential W for these haloes is then computed exactly, i.e. by

summing the contribution from each particle in the simulation.

Note that the parameter a depends on the dimensionless truncation

radius zt which can be evaluated only for TIS haloes.

One immediately notices that P(l) seems to depend on the

environment. It has been shown in recent work that a very good fit

to P(l) is given by a lognormal distribution (Dalcanton, Spergel &

Summers 1997; Mo, Mao & White 1998):

lPðlÞ ¼
1ffiffiffiffiffiffi

2p
p

sl

exp 2
ln2ðl/kllÞ

2s2
l

� �
dl: ð17Þ

Figure 10. The sv–M0 relation for groups in the DOUBLE region for which the truncation radius can be computed by inverting equation (13). The scatter is

less than in the analogous plot for all the groups found by SKID in the DOUBLE region, Fig. 3. The error bar in the lower left part of the plot represents the

uncertainty in the zero-point of the best-fitting curve induced by the scatter in observed values of zt. Note that it is less than the observed scatter.
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Figure 11. As Fig. 10 for the VOID region. Note that the scale of the axes is the same as in Fig. 10.

Figure 12. Probability distribution of the spin parameter for the three regions, for TIS haloes. The dashed curves are the best-fitting approximations obtained

using the lognormal distribution adopted by (Mo et al. 1998) (equation 15). Histograms and fitting curves are normalized to unity.
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Mo et al. (1998) suggest that equation (17) with kll ¼ 0:05, sl ¼

0:05 provides a good fit to the probability distribution of all haloes,

independently of the environment. What we observe is, on the

other hand, that all three observed distributions seem to be

reasonably well fitted by equation (17), but the values of the fitting

parameters are certainly very different from those mentioned

above. Moreover, for those haloes selected with adaptive FOF, the

distributions all seem to be consistent with each other but not well

fitted by the lognormal model (Fig. 13). The best-fitting values are

presented in Table 3.

This discrepancy may appear puzzling. However, Figs 12 and 13

cannot be compared, for two reasons. First, the total energy E

entering the definition of l was evaluated directly in Fig. 12, while

it was estimated from equation (16) in Fig. 13. The procedure that

we have adopted to extract fiducial TIS haloes does actually

produce a sample which follows the sv–M0 relationship with much

less statistical noise than the parent sample. However, there is an

even stronger factor that makes the comparison doubtful: the total

number of haloes extracted using adaptive FOF is much smaller

than that obtained using SKID. Moreover, the extent in l of the

spin probability distribution is smaller than for SKID, as is evident

from a comparison of the figures. If we take these differences into

account, we do not see any significant difference among the

distributions in the VOID region. For all these reasons, we can

conclude that there is a dependence of the spin probability

distribution P(l) on the environment only for TIS haloes. It would

be interesting to speculate about the physical mechanisms

producing this dependence, and we hope to be able to address

this question in further work.

Before closing this section, we would like to remind the reader

that recent theoretical calculations predict a rather large

distribution in the average values and shape of P(l), with a rather

marked dependence on the overdensity of the peak (Catelan &

Theuns 1996) or on the details of the merging histories (Nagashima

& Gouda 1998; Vitvitska et al. 2001). A direct comparison of our

results with the conditional probability distribution P(ljn) of

Catelan & Theuns (1996) is made difficult by the fact that the

relationship between the linear overdensity n and (for instance) the

final mass of the halo turns out to be quite noisy (Sugerman,

Summers & Kamionkowski 2000, their fig. 10), so it is not possible

to ‘label’ unambiguously each halo with its initial overdensity.

However, one could hope to increase further the number of haloes

by further diminishing the softening length, and we hope to get

better statistics from future simulations which would help us to

address the latter points also.

4.4 Density profiles of massive haloes

As we already mentioned in the Introduction, even the most

massive haloes that we find in this simulation using SKID do not

contain enough particles to allow a reliable determination of the

density profile. This is clearly visible from Fig. 14, where we plot

the profiles of the four most massive haloes extracted from the

DOUBLE cluster region. None of these haloes lies in the

Figure 13. As Fig. 12 but for haloes selected using adaptive FOF. The dashed curve is a lognormal distribution with kll ¼ 0:5, sv ¼ 0:05.

Table 3. Fits of P(l ) with a lognormal
distribution, for TIS haloes.

Region Median kll sl

VOID 0.018 0.018 0.5
DOUBLE 0.018 0.03 0.9
SINGLE 0.051 0.07 1.4
All (SKID) 0.06 0.07 0.65
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integrability strip of Fig. 11, so the best-fitting TIS profiles

displayed as continuous curves have been obtained by least-

squares fittings, where we have varied r0 and r0.

The distinguishing feature of the TIS density profile, when

compared with the universal density profile of Navarro et al. (1996,

1997), is the presence of a central core. Although the minimum-

energy TIS profiles fit the central regions reasonably well, they fall

off too gently at distances larger than a few times the core radius,

and in no case can we find a reasonably good overall agreement. It

would be hazardous to draw any conclusion from this comparison,

in view of the above-mentioned poor resolution. However, a

reasonable explanation for the sharp decline of the density profiles

is tidal stripping, which should be effective at a few times the core

radius.

5 C O N C L U S I O N

The properties of galaxy-sized haloes that we have considered in

this paper seem to be very constraining for halo collapse and

equilibrium models. However, none of the equilibrium models

considered (or the minimum energy TIS model) seems to be able to

give a comprehensive description of our findings. We would now

like to summarize our findings and to point to some controversial

questions that they pose.

First of all, the sv–M0 statistic seems to be a sensitive tool to

discriminate among different halo equilibrium models. This

statistic is easy to evaluate, because it relies on global quantities,

and it can then be applied to samples of haloes. In this context, it is

more difficult to discriminate models using statistics like the

density profile, which would require a considerably larger mass

range in order to give reliable results (see for instance Jing & Suto

2000).

Models for the sv–M0 statistic based on the NFW density profile

seem to be only marginally consistent with simulation data. The

role of the anisotropy parameter in this context does not seem to be

crucial: it is the slope of the radius–mass relationship for these

haloes that seems mostly to affect the normalization of the sv–M0

statistic.

As we have seen, the TIS model seems to offer a very good

quantitative framework to explain the sv–M0 statistic, even in the

VOID region where the slope of the relationship is very different

from that predicted by the minimum-energy TIS model of Shapiro

et al. The fact that a model based on the hypothesis that haloes have

a finite extent provides a good description should not come as a

surprise. Haloes forming in clusters experience a complex tidal

field originating from neighbouring haloes and from the large-scale

web in which they are embedded. The tidal radii of the

environments within which they lie, although often larger than

the mean distance, could limit the extent of haloes. A theoretical

treatment of the growth of the angular momentum is complicated

by the fact that the distribution of the torques induced by nearby

haloes depends on clustering (Antonuccio-Delogu & Atrio-

Barandela 1992). However, we believe that it would be difficult

to think that the truncation is a numerical artefact resulting from

the finite mass resolution: were this the case, we should expect the

same relationship between truncation radius rt and mass in all three

regions, but this is clearly not the case.

We have already noted the fact that the truncation radii we find

are always less than the critical value for the onset of gravothermal

instability, zcrit ¼ 34:2. This leads us to think that this instability is

at work in our simulations, but in order to investigate this issue one

Figure 14. Density profiles for the four most massive haloes within the DOUBLE region. The number of particles contained in each halo is shown. Best-fitting

solutions using the minimum-energy TIS solution by Shapiro et al. (1999) are shown.
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would need simulations with a dynamical range at least 3 orders of

magnitude larger than those used in this simulation.

Concerning the dependence of the distribution of spin

parameters on the environment, we find that haloes selected

using adaptive FOF do not show any dependence on the

environment (the same holds for haloes selected using SKID),

but if we select subsamples of fiducial TIS haloes, we do find a

dependence of the properties of P(l) on the environment. In

particular, this fact seems to be at odds with the recent investigation

by Syer, Mao & Mo (1999), who find that the observed distribution

of the spin parameter for a large homogeneous sample of spirals is

well described by a lognormal distribution with kll < 0:05 and a

variance sl < 0:36. This result is in contrast also with other work

(Warren et al. 1992; Eisenstein & Loeb 1995). If confirmed by

further investigations, this discrepancy could suggest that there is

probably some systematic trend in the way in which the angular

momentum of the luminous discs is connected with that of the

halo, which is not accounted for by the models of Syer et al.

(1999).

Last, but not least, it is important to stress that Lemson &

Kauffmann (1999) conclude that ‘Only the mass distribution varies

as a function of environment. This variation is well described by a

simple analytic formula based on the conditional Press–Schechter

theory. We find no significant dependence of any other halo

property on environment. . .’. In comparing their results with ours,

we must keep in mind that we have followed a very different

procedure from theirs, because we have prepared a simulation

using constrained initial conditions with the purpose of obtaining a

final configuration containing certain features (i.e. a double cluster

and a void). Although our simulation box is not an ‘average’ region

of the Universe, it is certainly a representative one. We stress again

the fact that all the haloes from underdense regions in our

simulation come from a void, and not from the outer parts of

clusters. Lemson & Kauffmann, on the other hand, seem to take

their haloes from all of the volume and group them according to the

overdensity of their parent regions. We think then that a direct

comparison between the results of these two different investi-

gations would be misleading, given the complementarity of our

approaches.
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A P P E N D I X A

We give a full derivation of equation (13). The starting point is the

virial theorem for systems with boundary pressure terms, as given

in equation (41) from Shapiro et al. (1999):

0 ¼ 2K þW þ Sp: ðA1Þ

In the above equation, the kinetic energy K can be rewritten in

terms of the one-dimensional velocity dispersion:

K ¼
M0kvl2

2
¼

3

2
M0s

2
v: ðA2Þ

The potential energy term W,

W ¼ 4pG

ð1

0

rMðrÞr dr ; 4pG

ðrt

0

rMðrÞr dr; ðA3Þ
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can be rewritten in terms of global quantities and of the

dimensionless radius zt:

W ¼ 2
GM2

0

rt

ztCðztÞ

M 2ðztÞ
; ðA4Þ

where we have defined

CðztÞ ¼

ðzt

0

dzz ~rðzÞ ~MðzÞ:

Finally, Sp is a surface term which arises from the constraint that

the system has a finite radius, and is given by (Shapiro et al.,

equation 43)

Sp ¼ 24pr3
0ptzt: ðA5Þ

We are adopting here the same notation as Shapiro et al., so that r0

and pt are the core radius and an external ‘pressure’ term,

respectively. Using equations (34) and (38) from Shapiro et al., the

latter equation can be rewritten in terms of the dimensionless

integrated mass and density:

Sp ¼ 2
M0

~MtðztÞ
~rðztÞs

2
v: ðA6Þ

Substituting equations (A2), (A4) and (A6) into equation (A1), we

get

3M0s
2
v ¼ 2

GM2
0

rt

ztCðztÞ

M 2ðztÞ
2

M0

~MtðztÞ
~rðztÞs

2
v; ðA7Þ

from which we get the desired equation.
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