131 research outputs found
The severity of Puumala hantavirus induced nephropathia epidemica can be better evaluated using plasma interleukin-6 than C-reactive protein determinations
<p>Abstract</p> <p>Background</p> <p>Nephropathia epidemica (NE) is a Scandinavian type of hemorrhagic fever with renal syndrome caused by Puumala hantavirus. The clinical course of the disease varies greatly in severity. The aim of the present study was to evaluate whether plasma C-reactive protein (CRP) and interleukin (IL)-6 levels associate with the severity of NE.</p> <p>Methods</p> <p>A prospectively collected cohort of 118 consecutive hospital-treated patients with acute serologically confirmed NE was examined. Plasma IL-6, CRP, and creatinine, as well as blood cell count and daily urinary protein excretion were measured on three consecutive days after admission. Plasma IL-6 and CRP levels higher than the median were considered high.</p> <p>Results</p> <p>We found that high IL-6 associated with most variables reflecting the severity of the disease. When compared to patients with low IL-6, patients with high IL-6 had higher maximum blood leukocyte count (11.9 <it>vs </it>9.0 × 10<sup>9</sup>/l, <it>P </it>= 0.001) and urinary protein excretion (2.51 <it>vs </it>1.68 g/day, <it>P </it>= 0.017), as well as a lower minimum blood platelet count (55 <it>vs </it>80 × 10<sup>9</sup>/l, <it>P </it>< 0.001), hematocrit (0.34 <it>vs </it>0.38, <it>P </it>= 0.001), and urinary output (1040 <it>vs </it>2180 ml/day, <it>P </it>< 0.001). They also stayed longer in hospital than patients with low IL-6 (8 <it>vs </it>6 days, <it>P </it>< 0.001). In contrast, high CRP did not associate with severe disease.</p> <p>Conclusions</p> <p>High plasma IL-6 concentrations associate with a clinically severe acute Puumala hantavirus infection, whereas high plasma CRP as such does not reflect the severity of the disease.</p
HSPG-Binding Peptide Corresponding to the Exon 6a-Encoded Domain of VEGF Inhibits Tumor Growth by Blocking Angiogenesis in Murine Model
Vascular endothelial growth factor VEGF165 is a critical element for development of the vascular system in physiological and pathological angiogenesis. VEGF isoforms have different affinities for heparan sulphate proteoglycan (HSPG) as well as for VEGF receptors; HSPGs are important regulators in vascular development. Therefore, inhibition of interactions between VEGF and HSPGs may prevent angiogenesis. Here, we demonstrate that an HSPG-binding synthetic peptide, corresponding to exon 6a-encoded domain of VEGF gene, has anti-angiogenic property. This 20 amino acids synthetic peptide prevents VEGF165 binding to several different cell types, mouse embryonic sections and inhibits endothelial cell migration, despite its absence in VEGF165 sequence. Our in vivo anti-tumor studies show that the peptide inhibits tumor growth in both mouse Lewis-Lung Carcinoma and human Liposarcoma tumor-bearing animal models. This is the first evidence that a synthetic VEGF fragment corresponding to exon 6a has functional antagonism both in vitro and in vivo. We conclude that the above HPSG binding peptide (6a-P) is a potent inhibitor of angiogenesis-dependent diseases
Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter
Genotype-to-phenotype maps and the related fitness landscapes that include
epistatic interactions are difficult to measure because of their high
dimensional structure. Here we construct such a map using the recently
collected corpora of high-throughput sequence data from the 75 base pairs long
mutagenized E. coli lac promoter region, where each sequence is associated with
its phenotype, the induced transcriptional activity measured by a fluorescent
reporter. We find that the additive (non-epistatic) contributions of individual
mutations account for about two-thirds of the explainable phenotype variance,
while pairwise epistasis explains about 7% of the variance for the full
mutagenized sequence and about 15% for the subsequence associated with protein
binding sites. Surprisingly, there is no evidence for third order epistatic
contributions, and our inferred fitness landscape is essentially single peaked,
with a small amount of antagonistic epistasis. There is a significant selective
pressure on the wild type, which we deduce to be multi-objective optimal for
gene expression in environments with different nutrient sources. We identify
transcription factor (CRP) and RNA polymerase binding sites in the promotor
region and their interactions without difficult optimization steps. In
particular, we observe evidence for previously unexplored genetic regulatory
mechanisms, possibly kinetic in nature. We conclude with a cautionary note that
inferred properties of fitness landscapes may be severely influenced by biases
in the sequence data
Inferring Binding Energies from Selected Binding Sites
We employ a biophysical model that accounts for the non-linear relationship between binding energy and the statistics of selected binding sites. The model includes the chemical potential of the transcription factor, non-specific binding affinity of the protein for DNA, as well as sequence-specific parameters that may include non-independent contributions of bases to the interaction. We obtain maximum likelihood estimates for all of the parameters and compare the results to standard probabilistic methods of parameter estimation. On simulated data, where the true energy model is known and samples are generated with a variety of parameter values, we show that our method returns much more accurate estimates of the true parameters and much better predictions of the selected binding site distributions. We also introduce a new high-throughput SELEX (HT-SELEX) procedure to determine the binding specificity of a transcription factor in which the initial randomized library and the selected sites are sequenced with next generation methods that return hundreds of thousands of sites. We show that after a single round of selection our method can estimate binding parameters that give very good fits to the selected site distributions, much better than standard motif identification algorithms
Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development
The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway
Oncological considerations of skin-sparing mastectomy
AIM: To review evidence concerning the oncological safety of performing skin-sparing mastectomy (SSM) for invasive breast cancer and ductal carcinoma in situ (DCIS). Furthermore, the evidence concerning RT in relation to SSM and the possibility of nipple preservation was considered. METHODS: Literature review facilitated by Medline and PubMed databases. FINDINGS: Despite the lack of randomised controlled trials, SSM has become an accepted procedure in women undergoing mastectomy and immediate reconstruction for early breast cancer. Compared to non-skin-sparing mastectomy (NSSM), SSM seems to be oncologically safe in patients undergoing mastectomy for invasive tumours smaller than 5 cm, multicentric tumours, DCIS or risk-reduction. However, the technique should be avoided in patients with inflammatory breast cancer or in those with extensive tumour involvement of the skin in view of the high risk of local recurrence. SSM with nipple areola complex (NAC) preservation appears to be oncologically safe, provided the tumour is not close to the nipple and a frozen section protocol for the retro-areolar tissue is followed. Although radiotherapy (RT) does not represent a contraindication to SSM, the latter should be used with caution if postoperative RT is likely, since it detracts from the final cosmetic outcome
Probing the Informational and Regulatory Plasticity of a Transcription Factor DNA–Binding Domain
Transcription factors have two functional constraints on their evolution: (1) their binding sites must have enough information to be distinguishable from all other sequences in the genome, and (2) they must bind these sites with an affinity that appropriately modulates the rate of transcription. Since both are determined by the biophysical properties of the DNA–binding domain, selection on one will ultimately affect the other. We were interested in understanding how plastic the informational and regulatory properties of a transcription factor are and how transcription factors evolve to balance these constraints. To study this, we developed an in vivo selection system in Escherichia coli to identify variants of the helix-turn-helix transcription factor MarA that bind different sets of binding sites with varying degrees of degeneracy. Unlike previous in vitro methods used to identify novel DNA binders and to probe the plasticity of the binding domain, our selections were done within the context of the initiation complex, selecting for both specific binding within the genome and for a physiologically significant strength of interaction to maintain function of the factor. Using MITOMI, quantitative PCR, and a binding site fitness assay, we characterized the binding, function, and fitness of some of these variants. We observed that a large range of binding preferences, information contents, and activities could be accessed with a few mutations, suggesting that transcriptional regulatory networks are highly adaptable and expandable
Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma
<p>Abstract</p> <p>Background</p> <p>Mortality is high in patients with esophageal carcinoma as tumors are rarely detected before the disease has progressed to an advanced stage. Here, we sought to isolate cell-free DNA released into the plasma of patients with esophageal carcinoma, to analyze copy number variations of marker genes in the search for early detection of tumor progression.</p> <p>Methods</p> <p>Plasma of 41 patients with esophageal carcinoma was prospectively collected before tumor resection and chemotherapy. Our dataset resulted heterogeneous for clinical data, resembling the characteristics of the tumor. DNA from the plasma was extracted to analyze copy number variations of the <it>erbB2 </it>gene using real-time PCR assays.</p> <p>Results</p> <p>The real-time PCR assays for <it>erbB2 </it>gene showed significant (<it>P </it>= 0.001) copy number variations in the plasma of patients with esophageal carcinoma, as compared to healthy controls with high sensitivity (80%) and specificity (95%). These variations in <it>erbB2 </it>were negatively correlated to the progression free survival of these patients (<it>P </it>= 0.03), and revealed a further risk category stratification of patients with low VEGF expression levels.</p> <p>Conclusion</p> <p>The copy number variation of <it>erbB2 </it>gene from plasma can be used as prognostic marker for early detection of patients at risk of worse clinical outcome in esophageal cancer.</p
The Population Genetics of dN/dS
Evolutionary pressures on proteins are often quantified by the ratio of substitution rates at non-synonymous and synonymous sites. The dN/dS ratio was originally developed for application to distantly diverged sequences, the differences among which represent substitutions that have fixed along independent lineages. Nevertheless, the dN/dS measure is often applied to sequences sampled from a single population, the differences among which represent segregating polymorphisms. Here, we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For population samples, the relationship between selection and dN/dS does not follow a monotonic function, and so it may be impossible to infer selection pressures from dN/dS. These results have significant implications for the interpretation of dN/dS measurements among population-genetic samples
- …