44 research outputs found

    Microarray Analyses of Inflammation Response of Human Dermal Fibroblasts to Different Strains of Borrelia burgdorferi Sensu Stricto

    Get PDF
    In Lyme borreliosis, the skin is the key site of bacterial inoculation by the infected tick, and of cutaneous manifestations, erythema migrans and acrodermatitis chronica atrophicans. We explored the role of fibroblasts, the resident cells of the dermis, in the development of the disease. Using microarray experiments, we compared the inflammation of fibroblasts induced by three strains of Borrelia burgdorferi sensu stricto isolated from different environments and stages of Lyme disease: N40 (tick), Pbre (erythema migrans) and 1408 (acrodermatitis chronica atrophicans). The three strains exhibited a similar profile of inflammation with strong induction of chemokines (CXCL1 and IL-8) and IL-6 cytokine mainly involved in the chemoattraction of immune cells. Molecules such as TNF-alpha and NF-κB factors, metalloproteinases (MMP-1, -3 and -12) and superoxide dismutase (SOD2), also described in inflammatory and cellular events, were up-regulated. In addition, we showed that tick salivary gland extracts induce a cytotoxic effect on fibroblasts and that OspC, essential in the transmission of Borrelia to the vertebrate host, was not responsible for the secretion of inflammatory molecules by fibroblasts. Tick saliva components could facilitate the early transmission of the disease to the site of injury creating a feeding pit. Later in the development of the disease, Borrelia would intensively multiply in the skin and further disseminate to distant organs

    Celiac disease diagnosis and gluten-free food analytical control

    Full text link

    Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk : The NEO study

    Get PDF
    Objective: The aim of this study was to examine the relations between intakes of total, saturated, mono-unsaturated, poly-unsaturated and trans fatty acids (SFA, MUFA, PUFA and TFA), and their dietary sources (dairy, meat and plant) with markers of type 2 diabetes risk. Subjects/Methods: This was a cross-sectional analysis of baseline data of 5675 non-diabetic, middle-aged participants of the Netherlands Epidemiology of Obesity (NEO) study. Associations between habitual dietary intake and fasting and postprandial blood glucose and insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), HOMA of β-cell function (HOMA-B) and Disposition Index were assessed through multivariable linear regression models with adjustments for demographic, lifestyle and dietary factors. Results: Mean (s.d.) intakes in percent of energy (En%) were 34.4 (5.8) for total fatty acids, 12.4 (2.9) for SFA, 12.2 (2.4) for MUFA, 6.9 (1.9) for PUFA and 0.6 (0.2) for TFA. As compared with carbohydrates, only SFA was weakly inversely associated with fasting insulin, HOMA-IR and HOMA-B. When stratified by dietary source, all fatty acids from meat were positively associated with fasting insulin-total fatty acidsmeat (per 5 En%: 10.0%; 95% confidence interval: 4.0, 16.3), SFAmeat (per 1 En%: 3.7%; 0.4, 7.2), MUFAmeat (per 1 En%: 5.0%; 2.0, 8.1), PUFAmeat (per 1 En%: 17.3%; 6.0, 29.7) and TFAmeat (per 0.1 En%: 10.5%; 3.2, 18.3). Similarly, all fatty acids from meat were positively associated with HOMA-IR and HOMA-B and inversely with Disposition Index. Conclusions: Our study suggests that the relations between fatty acid intakes and markers of type 2 diabetes risk may depend on the dietary sources of the fatty acids. More epidemiological studies on diet and cardiometabolic disease are needed, addressing possible interactions between nutrients and their dietary sources.</p
    corecore