209 research outputs found

    High and Low Dimensions in The Black Hole Negative Mode

    Full text link
    The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. We analyze the eigenvalue as a function of space-time dimension by constructing two perturbative expansions: one for large d and the other for small d-3, and determining as many coefficients as we are able to compute analytically. Joining the two expansions we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d=4.Comment: 17 pages, 4 figures. v2: added reference. v3: published versio

    Holographic repulsion and confinement in gauge theory

    Full text link
    We show that for asymptotically anti-deSitter backgrounds with negative energy, such as the AdS soliton and regulated negative mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (qqˉq \bar q) potential can be interpreted as affine time along null geodesics on the minimal string world sheet,and that its intrinsic curvature provides a signature of transition to confinement phase. The result demonstrates a UV/IR relation in that the boundary separation of the qqˉq \bar{q} pair exhibits an inverse relationship with the radial descent of the world sheet into the bulk. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity.Comment: 8 pages, 4 figure

    The Final State of Black Strings and p-Branes, and the Gregory-Laflamme Instability

    Full text link
    It is shown that the usual entropy argument for the Gregory-Laflamme (GL) instability for somesome appropriate black strings and pp-branes gives surprising agreement up to a few percent. This may provide a strong support to the GL's horizon fragmentation, which would produce the array of higher-dimensional Schwarzschild-type's black holes finally. On the other hand, another estimator for the size of the black hole end-state relative to the compact dimension indicates a second order (i.e., smooth) phase transition for some otherother appropriate compactifications and total dimension of spacetime wherein the entropy argument is not appropriate. In this case, Horowitz-Maeda-type's non-uniform black strings or pp-branes can be the final state of the GL instability.Comment: More emphasis on a second order phase transition. The computation result is unchange

    Classical Effective Field Theory for Weak Ultra Relativistic Scattering

    Full text link
    Inspired by the problem of Planckian scattering we describe a classical effective field theory for weak ultra relativistic scattering in which field propagation is instantaneous and transverse and the particles' equations of motion localize to the instant of passing. An analogy with the non-relativistic (post-Newtonian) approximation is stressed. The small parameter is identified and power counting rules are established. The theory is applied to reproduce the leading scattering angle for either a scalar interaction field or electro-magnetic or gravitational; to compute some subleading corrections, including the interaction duration; and to allow for non-zero masses. For the gravitational case we present an appropriate decomposition of the gravitational field onto the transverse plane together with its whole non-linear action. On the way we touch upon the relation with the eikonal approximation, some evidence for censorship of quantum gravity, and an algebraic ring structure on 2d Minkowski spacetime.Comment: 29 pages, 2 figures. v4: Duration of interaction is determined in Sec 4 and detailed in App C. Version accepted for publication in JHE

    One-Dimensional Approximation of Viscous Flows

    Full text link
    Attention has been paid to the similarity and duality between the Gregory-Laflamme instability of black strings and the Rayleigh-Plateau instability of extended fluids. In this paper, we derive a set of simple (1+1)-dimensional equations from the Navier-Stokes equations describing thin flows of (non-relativistic and incompressible) viscous fluids. This formulation, a generalization of the theory of drop formation by Eggers and his collaborators, would make it possible to examine the final fate of Rayleigh-Plateau instability, its dimensional dependence, and possible self-similar behaviors before and after the drop formation, in the context of fluid/gravity correspondence.Comment: 17 pages, 3 figures; v2: refs & comments adde

    Rotating nonuniform black string solutions

    Get PDF
    We explore via linearized perturbation theory the Gregory-Laflamme instability of rotating black strings with equal magnitude angular momenta. Our results indicate that the Gregory-Laflamme instability persists up to extremality for all even dimensions between six and fourteen. We construct rotating nonuniform black strings with two equal magnitude angular momenta in six dimensions. We see a first indication for the occurrence of a topology changing transition, associated with such rotating nonuniform black strings. Charged nonuniform black string configurations in heterotic string theory are also constructed by employing a solution generation technique.Comment: 36 pages, 10 figures, final versio

    Instabilities of Black Strings and Branes

    Get PDF
    We review recent progress on the instabilities of black strings and branes both for pure Einstein gravity as well as supergravity theories which are relevant for string theory. We focus mainly on Gregory-Laflamme instabilities. In the first part of the review we provide a detailed discussion of the classical gravitational instability of the neutral uniform black string in higher dimensional gravity. The uniform black string is part of a larger phase diagram of Kaluza-Klein black holes which will be discussed thoroughly. This phase diagram exhibits many interesting features including new phases, non-uniqueness and horizon-topology changing transitions. In the second part, we turn to charged black branes in supergravity and show how the Gregory-Laflamme instability of the neutral black string implies via a boost/U-duality map similar instabilities for non- and near-extremal smeared branes in string theory. We also comment on instabilities of D-brane bound states. The connection between classical and thermodynamic stability, known as the correlated stability conjecture, is also reviewed and illustrated with examples. Finally, we examine the holographic implications of the Gregory-Laflamme instability for a number of non-gravitational theories including Yang-Mills theories and Little String Theory.Comment: 119 pages, 16 figures. Invited review for Classical and Quantum Gravit

    Matrix Models, Geometric Engineering and Elliptic Genera

    Full text link
    We compute the prepotential of N=2 supersymmetric gauge theories in four dimensions obtained by toroidal compactifications of gauge theories from 6 dimensions, as a function of Kahler and complex moduli of T^2. We use three different methods to obtain this: matrix models, geometric engineering and instanton calculus. Matrix model approach involves summing up planar diagrams of an associated gauge theory on T^2. Geometric engineering involves considering F-theory on elliptic threefolds, and using topological vertex to sum up worldsheet instantons. Instanton calculus involves computation of elliptic genera of instanton moduli spaces on R^4. We study the compactifications of N=2* theory in detail and establish equivalence of all these three approaches in this case. As a byproduct we geometrically engineer theories with massive adjoint fields. As one application, we show that the moduli space of mass deformed M5-branes wrapped on T^2 combines the Kahler and complex moduli of T^2 and the mass parameter into the period matrix of a genus 2 curve.Comment: 90 pages, Late

    Generalized Kaehler Potentials from Supergravity

    Full text link
    We consider supersymmetric N=2 solutions with non-vanishing NS three-form. Building on worldsheet results, we reduce the problem to a single generalized Monge-Ampere equation on the generalized Kaehler potential K recently interpreted geometrically by Lindstrom, Rocek, Von Unge and Zabzine. One input in the procedure is a holomorphic function w that can be thought of as the effective superpotential for a D3 brane probe. The procedure is hence likely to be useful for finding gravity duals to field theories with non-vanishing abelian superpotential, such as Leigh-Strassler theories. We indeed show that a purely NS precursor of the Lunin-Maldacena dual to the beta-deformed N=4 super-Yang-Mills falls in our class.Comment: "38 pages. v3: improved exposition and minor mistakes corrected in sec. 4

    Can holography reproduce the QCD Wilson line?

    Full text link
    Recently a remarkable agreement was found between lattice simulations of long Wilson lines and behavior of the Nambu Goto string in flat space-time. However, the latter fails to fit the short distance behavior since it admits a tachyonic mode for a string shorter than a critical length. In this paper we examine the question of whether a classical holographic Wilson line can reproduce the lattice results for Wilson lines of any length. We determine the condition on the the gravitational background to admit a Coulombic potential at short distances. We analyze the system using three different renormalization schemes. We perform an explicit best fit comparison of the lattice results with the holographic models based on near extremal D3 and D4 branes, non-critical near extremal AdS6 model and the Klebanov Strassler model. We find that all the holographic models examined admit after renormalization a constant term in the potential. We argue that the curves of the lattice simulation also have such a constant term and we discuss its physical interpretation
    • …
    corecore