218 research outputs found

    Scattering lengths of calcium and barium isotopes

    Get PDF
    We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba), in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca does not provide other isotopes alternative to the recently Bose condensed 40Ca that suffers strong losses because of a very large scattering length. For Ba we show by using a model potential that the even isotopes cover a broad range of scattering lengths, opening the possibility of BEC for at least one of the isotopes.Comment: 4 page

    Health-related quality of life among persons with initial mild, moderate, and severe or critical COVID-19 at 1 and 12 months after infection: a prospective cohort study

    Get PDF
    BACKGROUND: Currently, there is limited evidence about the long-term impact on physical, social and emotional functioning, i.e. health-related quality of life (HRQL) after mild or moderate COVID-19 not requiring hospitalization. We compared HRQL among persons with initial mild, moderate or severe/critical COVID-19 at 1 and 12 months following illness onset with Dutch population norms and investigated the impact of restrictive public health control measures on HRQL. METHODS: RECoVERED, a prospective cohort study in Amsterdam, the Netherlands, enrolled adult participants after confirmed SARS-CoV-2 diagnosis. HRQL was assessed with the Medical Outcomes Study Short Form 36-item health survey (SF-36). SF-36 scores were converted to standard scores based on an age- and sex-matched representative reference sample of the Dutch population. Differences in HRQL over time were compared among persons with initial mild, moderate or severe/critical COVID-19 using mixed linear models adjusted for potential confounders. RESULTS: By December 2021, 349 persons were enrolled of whom 269 completed at least one SF-36 form (77%). One month after illness onset, HRQL was significantly below population norms on all SF-36 domains except general health and bodily pain among persons with mild COVID-19. After 12 months, persons with mild COVID-19 had HRQL within population norms, whereas persons with moderate or severe/critical COVID-19 had HRQL below population norms on more than half of the SF-36 domains. Dutch-origin participants had significantly better HRQL than participants with a migration background. Participants with three or more COVID-19 high-risk comorbidities had worse HRQL than part participants with fewer comorbidities. Participants who completed the SF-36 when restrictive public health control measures applied reported less limitations in social and physical functioning and less impaired mental health than participants who completed the SF-36 when no restrictive measures applied. CONCLUSIONS: Twelve months after illness onset, persons with initial mild COVID-19 had HRQL within population norms, whereas persons with initial moderate or severe/critical COVID-19 still had impaired HRQL. Having a migration background and a higher number of COVID-19 high-risk comorbidities were associated with worse HRQL. Interestingly, HRQL was less impaired during periods when restrictive public health control measures were in place compared to periods without. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02615-7

    Comparison of Insertional RNA Editing in Myxomycetes

    Get PDF
    RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails

    Moderators of the effect of psychosocial interventions on fatigue in women with breast cancer and men with prostate cancer:Individual patient data meta-analyses

    Get PDF
    Objective Psychosocial interventions can reduce cancer-related fatigue effectively. However, it is still unclear if intervention effects differ across subgroups of patients. These meta-analyses aimed at evaluating moderator effects of (a) sociodemographic characteristics, (b) clinical characteristics, (c) baseline levels of fatigue and other symptoms, and (d) intervention-related characteristics on the effect of psychosocial interventions on cancer-related fatigue in patients with non-metastatic breast and prostate cancer. Methods Data were retrieved from the Predicting OptimaL cAncer RehabIlitation and Supportive care (POLARIS) consortium. Potential moderators were studied with meta-analyses of pooled individual patient data from 14 randomized controlled trials through linear mixed-effects models with interaction tests. The analyses were conducted separately in patients with breast (n = 1091) and prostate cancer (n = 1008). Results Statistically significant, small overall effects of psychosocial interventions on fatigue were found (breast cancer: beta = -0.19 [95% confidence interval (95%CI) = -0.30; -0.08]; prostate cancer: beta = -0.11 [95%CI = -0.21; -0.00]). In both patient groups, intervention effects did not differ significantly by sociodemographic or clinical characteristics, nor by baseline levels of fatigue or pain. For intervention-related moderators (only tested among women with breast cancer), statistically significant larger effects were found for cognitive behavioral therapy as intervention strategy (beta = -0.27 [95%CI = -0.40; -0.15]), fatigue-specific interventions (beta = -0.48 [95%CI = -0.79; -0.18]), and interventions that only targeted patients with clinically relevant fatigue (beta = -0.85 [95%CI = -1.40; -0.30]). Conclusions Our findings did not provide evidence that any selected demographic or clinical characteristic, or baseline levels of fatigue or pain, moderated effects of psychosocial interventions on fatigue. A specific focus on decreasing fatigue seems beneficial for patients with breast cancer with clinically relevant fatigue

    Distinct genes related to drug response identified in ER positive and ER negative breast cancer cell lines

    Get PDF
    Breast cancer patients have different responses to chemotherapeutic treatments. Genes associated with drug response can provide insight to understand the mechanisms of drug resistance, identify promising therapeutic opportunities, and facilitate personalized treatment. Estrogen receptor (ER) positive and ER negative breast cancer have distinct clinical behavior and molecular properties. However, to date, few studies have rigorously assessed drug response genes in them. In this study, our goal was to systematically identify genes associated with multidrug response in ER positive and ER negative breast cancer cell lines. We tested 27 human breast cell lines for response to seven chemotherapeutic agents (cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, gemcitabine, and paclitaxel). We integrated publicly available gene expression profiles of these cell lines with their in vitro drug response patterns, then applied meta-analysis to identify genes related to multidrug response in ER positive and ER negative cells separately. One hundred eighty-eight genes were identified as related to multidrug response in ER positive and 32 genes in ER negative breast cell lines. Of these, only three genes (DBI, TOP2A, and PMVK) were common to both cell types. TOP2A was positively associated with drug response, and DBI was negatively associated with drug response. Interestingly, PMVK was positively associated with drug response in ER positive cells and negatively in ER negative cells. Functional analysis showed that while cell cycle affects drug response in both ER positive and negative cells, most biological processes that are involved in drug response are distinct. A number of signaling pathways that are uniquely enriched in ER positive cells have complex cross talk with ER signaling, while in ER negative cells, enriched pathways are related to metabolic functions. Taken together, our analysis indicates that distinct mechanisms are involved in multidrug response in ER positive and ER negative breast cells. © 2012 Shen et al
    corecore