573 research outputs found
Scaling studies of QCD with the dynamical HISQ action
We study the lattice spacing dependence, or scaling, of physical quantities
using the highly improved staggered quark (HISQ) action introduced by the
HPQCD/UKQCD collaboration, comparing our results to similar simulations with
the asqtad fermion action. Results are based on calculations with lattice
spacings approximately 0.15, 0.12 and 0.09 fm, using four flavors of dynamical
HISQ quarks. The strange and charm quark masses are near their physical values,
and the light-quark mass is set to 0.2 times the strange-quark mass. We look at
the lattice spacing dependence of hadron masses, pseudoscalar meson decay
constants, and the topological susceptibility. In addition to the commonly used
determination of the lattice spacing through the static quark potential, we
examine a determination proposed by the HPQCD collaboration that uses the decay
constant of a fictitious "unmixed s bar s" pseudoscalar meson. We find that the
lattice artifacts in the HISQ simulations are much smaller than those in the
asqtad simulations at the same lattice spacings and quark masses.Comment: 36 pages, 11 figures, revised version to be published. Revisions
include discussion of autocorrelations and several clarification
Tuning Fermilab Heavy Quarks in 2+1 Flavor Lattice QCD with Application to Hyperfine Splittings
We report the non-perturbative tuning of parameters--- kappa_c, kappa_b, and
kappa_crit ---that determine the heavy-quark mass in the Fermilab action. This
requires the computation of the masses of Ds^(*) and Bs^(*) mesons comprised of
a Fermilab heavy quark and a staggered light quark. Additionally, we report the
hyperfine splittings for Ds and Bs mesons as a cross-check of our simulation
and analysis methods. We find a splitting of 145 +/- 15 MeV for the Ds system
and 40 +/- 9 MeV for the Bs system. These are in good agreement with the
Particle Data Group average values of 143.9 +/- 0.4 MeV and 46.1 +/- 1.5 MeV,
respectively. The calculations are carried out with the MILC 2+1 flavor gauge
configurations at three lattice spacings approximately 0.15, 0.12, and 0.09
fm.Comment: 34 pages, 8 figures, 26 tables; some sections rearranged for clarity;
conclusions unchanged; version accepted by Phys. Rev.
Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam
The SciBooNE Collaboration has performed a search for charged current
coherent pion production from muon neutrinos scattering on carbon, \nu_\mu
^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for
coherent pion production is observed. We set 90% confidence level upper limits
on the cross section ratio of charged current coherent pion production to the
total charged current cross section at 0.67\times 10^{-2} at mean neutrino
energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.Comment: 18 pages, 16 figures, Minor revisions to match version accepted for
publication in Physical Review
Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam
The SciBooNE Collaboration reports a measurement of inclusive charged current
interactions of muon neutrinos on carbon with an average energy of 0.8 GeV
using the Fermilab Booster Neutrino Beam. We compare our measurement with two
neutrino interaction simulations: NEUT and NUANCE. The charged current
interaction rates (product of flux and cross section) are extracted by fitting
the muon kinematics, with a precision of 6-15% for the energy dependent and 3%
for the energy integrated analyses. We also extract CC inclusive interaction
cross sections from the observed rates, with a precision of 10-30% for the
energy dependent and 8% for the energy integrated analyses. This is the first
measurement of the CC inclusive cross section on carbon around 1 GeV. These
results can be used to convert previous SciBooNE cross section ratio
measurements to absolute cross section values.Comment: 21 pages, 16 figures. Accepted by Phys. Rev. D. Minor revisions to
match the accepted versio
Full nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks
Dramatic progress has been made over the last decade in the numerical study
of quantum chromodynamics (QCD) through the use of improved formulations of QCD
on the lattice (improved actions), the development of new algorithms and the
rapid increase in computing power available to lattice gauge theorists. In this
article we describe simulations of full QCD using the improved staggered quark
formalism, ``asqtad'' fermions. These simulations were carried out with two
degenerate flavors of light quarks (up and down) and with one heavier flavor,
the strange quark. Several light quark masses, down to about 3 times the
physical light quark mass, and six lattice spacings have been used. These
enable controlled continuum and chiral extrapolations of many low energy QCD
observables. We review the improved staggered formalism, emphasizing both
advantages and drawbacks. In particular, we review the procedure for removing
unwanted staggered species in the continuum limit. We then describe the asqtad
lattice ensembles created by the MILC Collaboration. All MILC lattice ensembles
are publicly available, and they have been used extensively by a number of
lattice gauge theory groups. We review physics results obtained with them, and
discuss the impact of these results on phenomenology. Topics include the heavy
quark potential, spectrum of light hadrons, quark masses, decay constant of
light and heavy-light pseudoscalar mesons, semileptonic form factors, nucleon
structure, scattering lengths and more. We conclude with a brief look at highly
promising future prospects.Comment: 157 pages; prepared for Reviews of Modern Physics. v2: some rewriting
throughout; references update
Anomalous scaling in homogeneous isotropic turbulence
The anomalous scaling exponents of the longitudinal structure
functions for homogeneous isotropic turbulence are derived from the
Navier-Stokes equations by using field theoretic methods to develop a low
energy approximation in which the Kolmogorov theory is shown to act effectively
as a mean field theory. The corrections to the Kolmogorov exponents are
expressed in terms of the anomalous dimensions of the composite operators which
occur in the definition of . These are calculated from the anomalous
scaling of the appropriate class of nonlinear Green's function, using an
fixed point of the renormalisation group, which thereby establishes the
connection with the dynamics of the turbulence. The main result is an algebraic
expression for , which contains no adjustable constants.
It is valid at orders below , where is the
fixed point coupling constant. This expression is used to calculate for orders in the range to 10, and the results are shown to be in
good agreement with experimental data, key examples being ,
and .Comment: REVTeX, 59 pages, icludes 8 .eps file
Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory
Solar neutrinos from the decay of B have been detected at the Sudbury
Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium
and by the elastic scattering (ES) of electrons. The CC reaction is sensitive
exclusively to nu_e's, while the ES reaction also has a small sensitivity to
nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC
reaction rate is
\phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6
/cm^2 s.
Assuming no flavor transformation, the flux inferred from the ES reaction
rate is
\phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s.
Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision
value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that
there is a non-electron flavor active neutrino component in the solar flux. The
total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x
10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter
- …