1,248 research outputs found

    Fluctuations of the Retarded Van der Waals Force

    Get PDF
    The retarded Van der Waals force between a polarizable particle and a perfectly conducting plate is re-examined. The expression for this force given by Casimir and Polder represents a mean force, but there are large fluctuations around this mean value on short time scales which are of the same order of magnitude as the mean force itself. However, these fluctuations occur on time scales which are typically of the order of the light travel time between the atom and the plate. As a consequence, they will not be observed in an experiment which measures the force averaged over a much longer time. In the large time limit, the magnitude of the mean squared velocity of a test particle due to this fluctuating Van der Waals force approaches a constant, and is similar to a Brownian motion of a test particle in an thermal bath with an effective temperature. However the fluctuations are not isotropic in this case, and the shift in the mean square velocity components can even be negative. We interpret this negative shift to correspond to a reduction in the velocity spread of a wavepacket. The force fluctuations discussed in this paper are special case of the more general problem of stress tensor fluctuations. These are of interest in a variety of areas fo physics, including gravity theory. Thus the effects of Van der Waals force fluctuations serve as a useful model for better understanding quantum effects in gravity theory.Comment: 14 pages, no figure

    Dynamical Casimir Effect in a Leaky Cavity at Finite Temperature

    Get PDF
    The phenomenon of particle creation within an almost resonantly vibrating cavity with losses is investigated for the example of a massless scalar field at finite temperature. A leaky cavity is designed via the insertion of a dispersive mirror into a larger ideal cavity (the reservoir). In the case of parametric resonance the rotating wave approximation allows for the construction of an effective Hamiltonian. The number of produced particles is then calculated using response theory as well as a non-perturbative approach. In addition we study the associated master equation and briefly discuss the effects of detuning. The exponential growth of the particle numbers and the strong enhancement at finite temperatures found earlier for ideal cavities turn out to be essentially preserved. The relevance of the results for experimental tests of quantum radiation via the dynamical Casimir effect is addressed. Furthermore the generalization to the electromagnetic field is outlined.Comment: 48 pages, 8 figures typos corrected & references added and update

    The Magnetic Casimir Effect

    Full text link
    The Casimir effect results from alterations of the zero-point electromagnetic energy introduced by boundary-conditions. For ferromagnetic layers separated by vacuum (or a dielectric) such boundary-conditions are influenced by the magneto-optical Kerr effect. We will show that this gives rise to a long-range magnetic interaction and discuss the effect for two different configurations (magnetization parallel and perpendicular to the layers). Analytical expressions are derived for two models and compared to numerical calculations. Numerical calculations of the effect for Fe are also presented and the possibility of an experimental observation of the Casimir magnetic interaction is discussed

    Events in a Non-Commutative Space-Time

    Full text link
    We treat the events determined by a quantum physical state in a noncommutative space-time, generalizing the analogous treatment in the usual Minkowski space-time based on positive-operator-valued measures (POVMs). We consider in detail the model proposed by Snyder in 1947 and calculate the POVMs defined on the real line that describe the measurement of a single coordinate. The approximate joint measurement of all the four space-time coordinates is described in terms of a generalized Wigner function (GWF). We derive lower bounds for the dispersion of the coordinate observables and discuss the covariance of the model under the Poincare' group. The unusual transformation law of the coordinates under space-time translations is interpreted as a failure of the absolute character of the concept of space-time coincidence. The model shows that a minimal length is compatible with Lorents covariance.Comment: 13 pages, revtex. Introductory part shortened and some arguments made more clea

    Temperature dependence of the Casimir effect between metallic mirrors

    Full text link
    We calculate the Casimir force and free energy for plane metallic mirrors at non-zero temperature. Numerical evaluations are given with temperature and conductivity effects treated simultaneously. The results are compared with the approximation where both effects are treated independently and the corrections simply multiplied. The deviation between the exact and approximated results takes the form of a temperature dependent function for which an analytical expression is given. The knowledge of this function allows simple and accurate estimations at the % level.Comment: 8 pages, 4 figures, uses RevTe

    Random Matrix Theory and Classical Statistical Mechanics. I. Vertex Models

    Full text link
    A connection between integrability properties and general statistical properties of the spectra of symmetric transfer matrices of the asymmetric eight-vertex model is studied using random matrix theory (eigenvalue spacing distribution and spectral rigidity). For Yang-Baxter integrable cases, including free-fermion solutions, we have found a Poissonian behavior, whereas level repulsion close to the Wigner distribution is found for non-integrable models. For the asymmetric eight-vertex model, however, the level repulsion can also disappearand the Poisson distribution be recovered on (non Yang--Baxter integrable) algebraic varieties, the so-called disorder varieties. We also present an infinite set of algebraic varieties which are stable under the action of an infinite discrete symmetry group of the parameter space. These varieties are possible loci for free parafermions. Using our numerical criterion we have tested the generic calculability of the model on these algebraic varieties.Comment: 25 pages, 7 PostScript Figure

    Square lattice Ising model susceptibility: Series expansion method and differential equation for χ(3)\chi^{(3)}

    Full text link
    In a previous paper (J. Phys. A {\bf 37} (2004) 9651-9668) we have given the Fuchsian linear differential equation satisfied by χ(3)\chi^{(3)}, the ``three-particle'' contribution to the susceptibility of the isotropic square lattice Ising model. This paper gives the details of the calculations (with some useful tricks and tools) allowing one to obtain long series in polynomial time. The method is based on series expansion in the variables that appear in the (n1)(n-1)-dimensional integrals representing the nn-particle contribution to the isotropic square lattice Ising model susceptibility χ\chi . The integration rules are straightforward due to remarkable formulas we derived for these variables. We obtain without any numerical approximation χ(3)\chi^{(3)} as a fully integrated series in the variable w=s/2/(1+s2)w=s/2/(1+s^{2}), where s=sh(2K) s =sh (2K), with K=J/kTK=J/kT the conventional Ising model coupling constant. We also give some perspectives and comments on these results.Comment: 28 pages, no figur

    Single-Pion Production in pp Collisions at 0.95 GeV/c (II)

    Get PDF
    The single-pion production reactions ppdπ+pp\to d\pi^+, ppnpπ+pp\to np\pi^+ and ppppπ0pp\to pp\pi^0 were measured at a beam momentum of 0.95 GeV/c (TpT_p \approx 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. Main emphasis is put on the presentation and discussion of the npπ+np\pi^+ channel, since the results on the other channels have already been published previously. The total and differential cross sections obtained are compared to theoretical calculations. In contrast to the ppπ0pp\pi^0 channel we find in the npπ+np\pi^+ channel a strong influence of the Δ\Delta excitation already at this energy close to threshold. In particular we find a (3cos2Θ+1)(3 cos^2\Theta + 1) dependence in the pion angular distribution, typical for a pure s-channel Δ\Delta excitation and identical to that observed in the dπ+d\pi^+ channel. Since the latter is understood by a s-channel resonance in the 1D2^1D_2 pnpn partial wave, we discuss an analogous scenario for the pnπ+pn\pi^+ channel

    Dynamical Casimir effect without boundary conditions

    Full text link
    The moving-mirror problem is microscopically formulated without invoking the external boundary conditions. The moving mirrors are described by the quantized matter field interacting with the photon field, forming dynamical cavity polaritons: photons in the cavity are dressed by electrons in the moving mirrors. The effective Hamiltonian for the polariton is derived, and corrections to the results based on the external boundary conditions are discussed.Comment: 12 pages, 2 figure
    corecore