117 research outputs found

    Pseudo-Stochastic Orbit Modeling Techniques for Low-Earth Orbiters

    Get PDF
    The Earth's non-spherical mass distribution and atmospheric drag cause the strongest perturbations on very low-Earth orbiting satellites (LEOs). Models of gravitational and non-gravitational accelerations are utilized in dynamic precise orbit determination (POD) with GPS data, but it is also possible to derive LEO positions based on GPS precise point positioning without dynamical information. We use the reduced-dynamic technique for LEO POD, which combines the geometric strength of the GPS observations with the force models, and investigate the performance of different pseudo-stochastic orbit parametrizations, such as instantaneous velocity changes (pulses), piecewise constant accelerations, and continuous piecewise linear accelerations. The estimation of such empirical orbit parameters in a standard least-squares adjustment process of GPS observations, together with other relevant parameters, strives for the highest precision in the computation of LEO trajectories. We used the procedures for the CHAMP satellite and found that the orbits may be validated by means of independent SLR measurements at the level of 3.2cm RMS. Validations with independent accelerometer data revealed correlations at the level of 95% in the along-track direction. As expected, the empirical parameters compensate to a certain extent for deficiencies in the dynamic models. We analyzed the capability of pseudo-stochastic parameters for deriving information about the mismodeled part of the force field and found evidence that the resulting orbits may be used to recover force field parameters, if the number of pseudo-stochastic parameters is large enough. Results based on simulations showed a significantly better performance of acceleration-based orbits for gravity field recovery than for pulse-based orbits, with a quality comparable to a direct estimation if unconstrained accelerations are set up every 30

    Sensitivity of GPS and GLONASS orbits with respect to resonant geopotential parameters

    Get PDF
    The Center for Orbit Determination in Europe (CODE) has been involved in the processing of combined GPS/GLONASS data during the International GLONASS Experiment (IGEX). The resulting precise orbits were analyzed using the program SORBDT. Introducing one satellite's positions as pseudo-observations, the program is capable of fitting orbital arcs through these positions using an orbit improvement procedure based on the numerical integration of the satellite's orbit and its partial derivative with respect to the orbit parameters. For this study, the program was enhanced to estimate selected parameters of the Earth's gravity field. The orbital periods of the GPS satellites are —in contrast to those of the GLONASS satellites - 2:1 commensurable (P Sid:P GPS) with the rotation period of the Earth. Therefore, resonance effects of the satellite motion with terms of the geopotential occur and they influence the estimation of these parameters. A sensitivity study of the GPS and GLONASS orbits with respect to the geopotential coefficients reveals that the correlations between different geopotential coefficients and the correlations of geopotential coefficients with other orbit parameters, in particular with solar radiation pressure parameters, are the crucial issues in this context. The estimation of the resonant geopotential terms is, in the case of GPS, hindered by correlations with the simultaneously estimated radiation pressure parameters. In the GLONASS case, arc lengths of several days allow the decorrelation of the two parameter types. The formal errors of the estimates based on the GLONASS orbits are a factor of 5 to 10 smaller for all resonant term

    Efficient satellite orbit modelling using pseudo-stochastic parameters

    Get PDF
    If the force field acting on an artificial Earth satellite is not known a priori with sufficient accuracy to represent its observations on their accuracy level, one may introduce so-called pseudo-stochastic parameters into an orbit determination process, e.g. instantaneous velocity changes at user-defined epochs or piecewise constant accelerations in user-defined adjacent time subintervals or piecewise linear and continuous accelerations in adjacent time subintervals. The procedures, based on standard least-squares, associated with such parameterizations are well established, but they become inefficient (slow) if the number of pseudo-stochastic parameters becomes large. We develop two efficient methods to solve the orbit determination problem in the presence of pseudo-stochastic parameters. The results of the methods are identical to those obtained with conventional least-squares algorithms. The first efficient algorithm also provides the full variance-covariance matrix; the second, even more efficient algorithm, only parts of i

    Validating ocean tide loading models using GPS

    Get PDF
    Abstract.: Ocean tides cause periodic deformations of the Earth's surface, also referred to as ocean tide loading (OTL). Tide-induced displacements of the Earth's crust relying on OTL models are usually taken into account in GPS (Global Positioning System) data analyses. On the other hand, it is also possible to validate OTL models using GPS analyses. The following simple approach is used to validate OTL models. Based on a particular model, instantaneous corrections of the site coordinates due to OTL are computed. Site-specific scale factors, f, for these corrections are estimated in a standard least-squares adjustment process of GPS observations together with other relevant parameters. A resulting value of f close to unity indicates a good agreement of the model with the actual site displacements. Such scale factors are computed for about 140 globally distributed IGS (International GPS Service) tracking sites. Three OTL models derived from the ocean tide models FES95.2.1, FES99, and GOT00.2 are analyzed. As expected, the most reliable factors are estimated for sites with a large loading effect. In general, the scaling factors have a value close to unity and no significant differences between the three ocean tide models could be observed. It is found that the validation approach is easy to apply. Without requiring much additional effort for a global and self-consistent GPS data analysis, it allows detection of general model misfits on the basis of a large number of globally distributed sites. For detailed validation studies on OTL models, the simultaneous estimation of amplitudes and phases for the main contributing partial tides within a GPS parameter adjustment process would provide more detailed answer

    Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination

    Get PDF
    Most satellites in a low-Earth orbit (LEO) with demanding requirements on precise orbit determination (POD) are equipped with on-board receivers to collect the observations from Global Navigation Satellite systems (GNSS), such as the Global Positioning System (GPS). Limiting factors for LEO POD are nowadays mainly encountered with the modeling of the carrier phase observations, where a precise knowledge of the phase center location of the GNSS antennas is a prerequisite for high-precision orbit analyses. Since 5 November 2006 (GPS week 1400), absolute instead of relative values for the phase center location of GNSS receiver and transmitter antennas are adopted in the processing standards of the International GNSS Service (IGS). The absolute phase center modeling is based on robot calibrations for a number of terrestrial receiver antennas, whereas compatible antenna models were subsequently derived for the remaining terrestrial receiver antennas by conversion (from relative corrections), and for the GNSS transmitter antennas by estimation. However, consistent receiver antenna models for space missions such as GRACE and TerraSAR-X, which are equipped with non-geodetic receiver antennas, are only available since a short time from robot calibrations. We use GPS data of the aforementioned LEOs of the year 2007 together with the absolute antenna modeling to assess the presently achieved accuracy from state-of-the-art reduced-dynamic LEO POD strategies for absolute and relative navigation. Near-field multipath and cross-talk with active GPS occultation antennas turn out to be important and significant sources for systematic carrier phase measurement errors that are encountered in the actual spacecraft environments. We assess different methodologies for the in-flight determination of empirical phase pattern corrections for LEO receiver antennas and discuss their impact on POD. By means of independent K-band measurements, we show that zero-difference GRACE orbits can be significantly improved from about 10 to 6mm K-band standard deviation when taking empirical phase corrections into account, and assess the impact of the corrections on precise baseline estimates and further applications such as gravity field recovery from kinematic LEO position

    Validating ocean tide loading models using GPS

    Get PDF

    A New Combined European Permanent Network Station Coordinates Solution

    Full text link
    The EUREF (International Association of Geodesy (IAG) Reference Frame Sub-Commission for Europe) network of continuously operating GPS stations (EPN) was primarily established for reference frame maintenance, and also plays an important role for geodynamical research in Europe. The main goal of this paper is to obtain an independent homogeneous time-series of the EPN station coordinates, which is also available in SINEX format. A new combined solution of the EPN station coordinates was computed. The combination was performed independently for every week, in three steps: 1. the stated constraints on the coordinates were removed from the individual solutions of the Analysis Centers; 2. the de-constrained solutions were aligned to ITRF2000; 3. the resulting solutions were combined using the Helmert block-ing technique. All the data from GPS week 900 to week 1302 (April 1997 - December 2004) were used. We investigated in detail the behavior of the transformation parameters aligning the new combined solution to ITRF2000. In general, the time-series of the transformation parameters show a good stability in time although small systematic effects can be seen, most likely caused by station instabilities. A comparison of the new combined solution to the official EUREF weekly combined solution is also presented
    corecore