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Abstract. Ocean tides cause periodic deformations of the
Earth’s surface, also referred to as ocean tide loading
(OTL). Tide-induced displacements of the Earth’s crust
relying on OTL models are usually taken into account in
GPS (Global Positioning System) data analyses. On the
other hand, it is also possible to validate OTL models
using GPS analyses. The following simple approach is
used to validate OTL models. Based on a particular
model, instantaneous corrections of the site coordinates
due to OTL are computed. Site-specific scale factors, 1, for
these corrections are estimated in a standard least-squares
adjustment process of GPS observations together with
other relevant parameters. A resulting value of f close to
unity indicates a good agreement of the model with the
actual site displacements. Such scale factors are computed
for about 140 globally distributed IGS (International GPS
Service) tracking sites. Three OTL models derived from the
ocean tide models FES95.2.1, FES99, and GOT00.2 are
analyzed. As expected, the most reliable factors are
estimated for sites with a large loading effect. In general,
the scaling factors have a value close to unity and no
significant differences between the three ocean tide models
could be observed. It is found that the validation approach
is easy to apply. Without requiring much additional effort
for a global and self-consistent GPS data analysis, it allows
detection of general model misfits on the basis of a large
number of globally distributed sites. For detailed valida-
tion studies on OTL models, the simultaneous estimation
of amplitudes and phases for the main contributing partial
tides within a GPS parameter adjustment process would
provide more detailed answers.
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1 Introduction

Tidal forces due to the Moon and Sun deform the Earth
and are responsible for solid-Earth tides and ocean tides.
They produce temporal variations of the Earth’s gravity
field and measurable periodic deformations of the
Earth’s surface. Site displacements caused by solid-
Earth tides may reach amplitudes of up to 40 cm
(Vanicek and Krakiwsky 1986). In addition, ocean tides
induce a temporal variation of the ocean mass distribu-
tion. The associated periodic deformation of the Earth’s
crust is known as ocean tide loading (OTL).

The vertical site displacements due to OTL may reach
values of several centimeters for coastal sites, and they
may be measured using space geodetic techniques such
as the Global Positioning System (GPS) (see e.g. Baker
et al. 1995). For a baseline with a length of 100 km,
directed inland from the coast, the relative OTL effect
may reach a magnitude of 1 cm and should be taken into
account not only for undifferenced but also for inter-
ferometric processing of GPS data (Dach and Dietrich
2001).

In high-precision GPS data analyses, OTL models
are usually applied to account for these displacements of
the Earth’s surface. However, it is also possible to derive
OTL effects from site displacements measured with GPS
tracking data. The displacement of sites due to OTL
may be described as a sum of harmonic oscillations. The
frequencies of the main constituents are well known
because the loading signal consists of the same partial
tides and frequencies as the tide-generating potential.
Based on the frequency content, site-specific amplitudes
and phases of the corresponding constituents may be
obtained from GPS measurements.

There are several previous studies on deriving OTL
parameters from vertical and horizontal position time
series estimated from GPS tracking data within regional
networks (see e.g. Khan and Scherneck 2002; Kirchner
2001). The most appropriate approach, however, would
be to solve for site-specific OTL parameters (amplitudes
and phases) in a global GPS data analysis, including
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other relevant parameters. However, the resulting large
number of parameters to be estimated in such a solution
imposes high demands on computational resources. For
each site, six OTL parameters (three components each of
amplitude and phase) for each partial tide have to be set
up in the parameter adjustment process. Taking into
account the 11 main tidal constituents, 9900 parameters
have to be determined for a global network of about 150
GPS tracking sites, in addition to station coordinates,
troposphere, orbit, Earth orientation, and phase ambi-
guity parameters. Schenewerk et al. (2001) have done
such an analysis with some restrictions to decrease the
number of parameters. They estimated 16 OTL param-
eters for each site, the vertical component of amplitudes
and phases of eight main tidal terms using Helmert
blocking technique to cope with the large number of
parameters.

Our study focuses on a more simplified method of
validating selected OTL models on the basis of GPS
measurements. We estimate only one additional
parameter, a scaling factor, for each site of a global GPS
tracking network. We accept the loss of site-specific
amplitude and phase information in exchange for a
relatively small number of parameters. Nevertheless, we
can obtain general validation information for global
OTL models.

The aim of this paper is to present validation results
obtained with this simple approach. Section 2 gives a
short overview of the three ocean tide models consid-
ered, FES95.2.1, FES99, and GOT00.2. Section 3 ex-
plains the OTL effect. The wvalidation method is
demonstrated in Sect. 4. Section 5 presents the data set
and the GPS processing strategy used for validation, and
Sect. 6 analyzes the validation results and discusses the
estimated scaling factors for the global solution, as well
as for a few selected GPS sites.

2 Ocean tide models

Ocean tide models give the variations in ocean surface
height due to tide-generating forces for each geograph-
ical location in the ocean and for each point in time.
Most of the ocean tide models provide amplitudes and
phases for the 11 main tidal constituents: the semi-
diurnal waves M>, S>, N, K5, the diurnal waves K, O,
Pi, O1, and the long-period waves My, M,, and S,,. More
than 95% of the tidal signal is characterized by these 11
constituents (Lambeck 1988).

Several ocean tide models are available, varying in
characteristics such as the methods of their determina-
tion, additionally used empirical tide information, and
spatial resolution. The ocean tide models considered in
this paper are the Grenoble tide model, FES95.2.1 (Le
Provost et al. 1998), the LEGOS tide model, FES99
(Lefevre et al. 2002), and the Goddard tide model,
GOTO00.2 (Ray 1999; Petrov and Ma 2002). All of them
are based on the pure hydrodynamic model FES94 (Le
Provost et al. 1994) as a reference model. FES95.2.1 is a
hydrodynamic tide model taking into account TOPEX/
Poseidon altimeter data. It is given on a 0.5x0.5 degree
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grid. The more recent models FES99 and GOTO00.2,
recommended by the IERS Conventions 2000 (McCar-
thy 2003), are also hydrodynamic models using TOPEX/
Poseidon data. FES99, in addition, assimilates tide-
gauge observations and provides a 0.25x0.25 degree
resolution. GOT00.2, with a 0.5x0.5 degree grid, addi-
tionally utilizes ERS1/2 altimeter data.

The accuracy of these models depends very much on
the TOPEX/Poseidon altimetry data, and is thus limited
by the restricted TOPEX/Poseidon coverage in latitude
of £+ 66°. The tide model GOT00.2 is different from the
FES tide models in polar regions because ERS1/2
altimetry measurements are used with a coverage in
latitude of about + 82°.

The quality of the computed OTL deformations de-
pends on the ocean tide model used. Shum et al. (1997)
have shown that most of the global ocean tide models
agree to within 2-3 cm in the deep ocean. The largest
differences between the models occur in shallow waters
and coastal seas, indicating that these areas are not
accurately mapped by global ocean tide models. The
spatial resolution of global tide models is, in general,
only of the order of 50 km, and significantly limits the
accuracy near coastal regions.

3 Ocean tide loading (OTL) models

Deformations due to OTL can be derived from ocean
tide models by an integration over all global water
masses using a Green’s function. This function describes
the elastic response of the Earth’s crust to the surface
load (see e.g. Farrell 1972; Scherneck 1991).

The OTL values considered in this study are those
computed by Scherneck (2003). The site-specific ampli-
tudes and phases of the horizontal and vertical loading
displacements may be extracted for the 11 main constit-
uents for each ocean tide model. The Green’s functions
for the Gutenberg—Bullen Earth model are used to
determine the deformation of the Earth’s crust due to
point loads. The coastline information is taken from the
GMT (Generic Mapping Tools) software package (Wes-
sel and Smith 2004) with a resolution of about 0.6 km.

The displacement vector, e, due to OTL at time ¢ can
be expressed as a sum over n contributing individual
ocean tides and is given in vertical, north-south, and
east-west components (see e.g. Seidelmann 1992)

AY  cos(wit + ¢; — 9))
e(r) =Y | ANS cos(wjt + §; — O)°) (1)

= APV cos(wit + ¢; — oFY)

where w; is the frequency of the tidal constituents and ¢;
the corresponding astronomical argument. The site-
specific amplitudes 4Y, AN, AW and Greenwich phase
lags 87, 00 6EW of each tidal constituent are provided by
the particular OTL model for each position requested.
In this study, we compute the OTL effect caused by

the 11 main tidal constituents (n = 11, provided by
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Fig. 1. Maximum magnitudes of the vertical site displacements (in
cm) due to OTL based on the GOT00.2 ocean tide model

Scherneck 2003) and neglect further tides, as well as
nodal modulation.

Figure 1 shows the maximum magnitudes of the
vertical site displacements due to OTL, MY, computed
from the GOTO00.2 ocean tide model by summing up the
vertical amplitudes of the 11 main constituents

11
M=y 4 )
i=1

for each GPS site considered in the data analysis. The
resulting magnitudes of the vertical site displacements
are of the order of 1-2 cm in continental regions and
they may reach up to 7-9 cm at the coast. The horizontal
displacements due to OTL are approximately a factor of
3-10 smaller than those in the vertical component.
However, in reality, taking into account phase relation-
ships, the maximum possible magnitudes of the site
displacements are smaller. Summing up the amplitudes
of the constituents will always give an over-estimate of
the maximum possible magnitude (Yi et al. 2000).

4 Validation method

We use the following approach proposed by Dach and
Dietrich (2001) for validating OTL models. The geo-
centric position vector rg(¢) of a GPS tracking site is
corrected by the product of the OTL displacement
vector e(¢) (transformed from the local to the geocentric
coordinate system) and a scale factor f

r(1) = ro(1) + fe(?) 3)

The scale factor f is estimated for each site in a standard
least-squares adjustment process of GPS observations
simultaneously with all other parameters. The scale
factor is used as an indicator of the agreement of the
OTL model with the actual site displacements.

An f value close to unity indicates that the model is
confirmed by the GPS tracking data. A significant
deviation from unity would indicate a model misfit in
amplitude, or in phase, or in both, of one or more ocean
tide constituents. Using this approach, it is not possible

to assign model errors to specific constituents or to
decide whether amplitude or phase, or both, show dis-
crepancies. This method is suitable to detect model
misfits in general on a global scale using a minimum
number of additional parameters.

5 Data set and analysis

GPS observations from 138 globally distributed 1GS
tracking sites, covering a time period of 46 days, from
February 09 to March 26 2003 (day of year 2003: 40—
85), were analyzed. The development version 5.0 of the
Bernese GPS Software (Hugentobler et al. 2001) was
used for this purpose.

We used double difference GPS carrier-phase mea-
surements performing a complete network solution. An
elevation cut-off angle of 3° was imposed on the solu-
tion. Carrier-phase ambiguities were solved and a con-
siderable number were kept fixed to the known integers.
Polar tides, solid-Earth tides (see McCarthy 2003), and
OTL corrections were applied. Non-tidal loading, such
as atmospheric loading, is not considered, following the
current practice of GPS analyses in the IGS.

Site coordinates, troposphere parameters, and OTL
scale factors were determined in a minimum-constraint
network solution for each of the 138 GPS tracking sites.
For self-consistency, orbital elements and Earth rotation
parameters were also estimated. The datum was defined
by adopting three reference frame constraints in terms of
no-net-rotation conditions for about 40 carefully
selected fiducial sites. Tropospheric delays were modeled
by estimating 12 zenith delay parameters for each sta-
tion per day, using the Niell mapping functions (Niell
1996). In addition, one pair of troposphere gradients
was estimated for each station per day to model azi-
muthal asymmetries (see e.g. Davis et al. 1993).

The analysis was performed using the three above-
mentioned ocean tide models (FES95.2.1, FES99,
GOTO00.2). The OTL correction values were computed
in March 2003 by Scherneck (2003). Unconstrained
daily site-specific OTL scale factors were estimated, to-
gether with all mentioned parameters for each solution
type.

The individual daily solutions were accumulated at the
normal equation level to obtain one combined solution,
including the site-specific combination of the OTL scale
factors to one set of average factors for the processed
interval of 46 days. The site coordinates were also com-
bined into one set of coordinates. The time period of 46
days is large enough to demonstrate the capacity of the
validation method. However, a larger time series, opti-
mally more than a year, may help further to decorrelate
effects such as non-tidal loading from OTL.

6 Results

In this section we analyze the OTL scale factors resulting
from the parameter adjustment process. First, we give
an overview of the average scale factors estimated for



the 138 GPS sites and compare the results obtained for
the three ocean tide models (Sect. 6.1). Second, we have
selected a few sites to demonstrate the behavior of the
scale factors in more detail (Sect. 6.2). In Sect. 6.3 we
address some problems (length of observation interval,
tidal aliasing, correlation effects) affecting the estimation
of the scale factors.

6.1. Scale factors for OTL estimated in a global solution

The site-specific scale factors for OTL in the combined
solution using model GOT00.2 are shown in Fig. 2. The
point size indicates the maximum magnitudes of the
vertical site displacements, M", due to OTL (see Fig. 1),
decreasing with the distance to the coast. The histogram
in Fig. 3 shows the distribution of these average scale
factors.

Most scale factors are close to unity, implying that
the used OTL model is confirmed on average by the GPS
analysis. Most of the factors deviating significantly from
unity are found in the inner part of the Eurasian plate.
This result is most likely due to the fact that OTL dis-
placements are very small, within the noise level, for
inner continental regions, implying that the scale factor
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\\\

02cm
4cm

Oscm

O 8cm
10cm

Fig. 2. Average scale factors for OTL using the GOT00.2 ocean tide
model. Circle diameters indicate the maximum magnitudes of the
vertical site displacements due to OTL

60

50 1

40t 1

30 1

201 1

Number of stations

10t .

oLMNBL . ﬂ RAMO
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Scale factor for ocean tide loading

Fig. 3. Distribution of the average scale factors for OTL using the
GOTO00.2 ocean tide model
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centimeters

Fig. 4. Corrections of the maximum vertical magnitudes of OTL (in
cm) derived from the average scale factors using the GOT00.2 ocean
tide model

itself is very poorly determined. The minimum value of
f = —1.6 was estimated for the Russian site Norilsk
(NRIL) in northern Eurasia, and the maximum value of
f = 2.1 for the site Mitzpe Ramon (RAMO) in Israel.

Due to the varying size of OTL displacements, it
might be more meaningful to express the scale factors in
terms of vertical magnitude corrections by multiplying
f — 1 by the maximum magnitude M"

Ae¥ = MY — M (4)

Such values may be interpreted as model discrepancies.
Figure 4 visualizes the corrections Ae" estimated for the
GOTO00.2 ocean tide model. The coastal sites show
larger corrections than other sites. The correction values
for inner continental sites are close to zero. The extreme
values are obtained for NRIL and RAMO, although
both sites have relatively small theoretical displacements
due to OTL. The discrepancy Ae" for the site NRIL is
about —2 cm and it is about 1 cm for RAMO. It may be
assumed that on-site GPS tracking problems are the
cause of the discrepancy at RAMO.

Figure 5 shows the reproducibility (weighted stan-
dard deviation) ¢ of the daily estimated scale factors
with respect to the average scale factor for GOT00.2. As
expected, because of the small OTL effect in the inner
part of the Eurasian plate, the biggest standard devia-
tions show up there and underline the difficulty of vali-
dating very small OTL signals.

Figure 6 shows the scale factors in units of the day-
to-day reproducibility

-1

g

()

Scale factors f with values —1 < f, < 1 are within a one-
sigma interval around the mean value of unity. Almost
all sites obtain values within this range, i.e. the estimated
scale factors confirm the used OTL models for most of
the GPS sites. Four sites exhibit values exceeding the
one-sigma interval (black and white circles in Fig. 6).
Three of them are very close to the one-sigma interval
boundaries, the exception is for the site NRIL with a
value of f, = —1.5.

fr=
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Fig. 5. Reproducibility of the daily estimated scale factors for OTL
using the GOT00.2 ocean tide model

Now we compare the results obtained for the
GOTO00.2 ocean tide model with the results for the
FES95.2.1 and FES99 models. Figures 7 and 8 depict
the corrections Ae" of the vertical site displacement due
to OTL derived from the average scale factors using the
FES95.2.1 and FES99 models, respectively, relative to
the corrections estimated using the GOT00.2 model. The
displacement corrections for the OTL models derived
from FES95.2.1 (see Fig. 7) differ from those derived
from GOTO00.2 by up to 1 cm in the area around the
Indonesian archipelago. This might be attributed to the
TOPEX/Poseidon data assimilated in the FES95.2.1
ocean tide model. These altimeter data are only frag-
mentary covering the Indonesian area due to the large
density of islands (Daly 2001). The differences between
the site displacement corrections for the OTL models
derived from the more recent GOT00.2 and FES99
ocean tide models are fairly small (see Fig. 8) and reach
a maximum value of about 4 mm at coastal sites. The
repeatabilities of the daily estimated scale factors for the
FES95.2.1 and FES99 ocean tide models are quite sim-
ilar to those achieved with GOT00.2, which is why we do
not display them.

6.2 Scale factors for OTL for selected GPS sites

Let us now more closely inspect the scale factors for the
three GPS sites: Alert (ALRT) in Greenland, Auckland
(AUCK) in New Zealand, and Norilsk (NRIL) in
northern Eurasia (marked in all previous figures). They
are selected more or less arbitrarily, but to have the
greatest possible differences in characteristics (different
geographical location, different magnitudes in site
displacement due to OTL, and different estimated scale
factors).

Figures 9a, ¢ and 9e depict the vertical site displace-
ments of each site due to OTL for the processing interval
of 46 days and for each of the three models. The dif-
ferent models are indicated by different types of lines,
note the differences in scale. The site displacements look
very similar for all three models at the sites AUCK and
NRIL. They differ slightly in size, by small amounts

'
—_

-0.5 0 0.5 1

Fig. 6. Average scale factors for OTL using the GOT00.2 ocean tide
model expressed in units of the reproducibility

OALRT [0\
@

millimeters

Fig. 7. Corrections of the maximum vertical magnitudes of OTL (in
mm) derived from the average scale factors using the GOTO00.2 ocean
tide model relative to the corrections estimated using the FES95.2.1
model

millimeters

Fig. 8. Corrections of the maximum vertical magnitudes of OTL (in
mm) derived from the average scale factors using the GOTO00.2 ocean
tide model relative to the corrections estimated using the FES99
model

compared to the total displacement. For the site ALRT,
model differences in phase as well as in magnitude are
visible.
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Fig. 9. a, ¢, e Vertical site displacements (in mm) due to OTL derived
from the FES95.2.1, FES99, and GOT00.2 tide models for each of the
sites ALRT, AUCK, and NRIL starting in February 2003. b, d, f
Daily site-specific scale factors for OTL with formal RMS errors for

The corresponding daily estimated scale factors for
OTL and their formal RMS errors for the AUCK,
ALRT, and NRIL sites are shown in Figs. 9b, 9d, and
9f, respectively. The horizontal lines represent the

the sites ALRT, AUCK, and NRIL starting in February 2003. The
horizontal lines represent the average scale factors of the combined
solution for each ocean tide model

average scale factors of the combined solutions. The
numerical values of the average scale factors f, as well as
the reproducibility ¢ (weighted RMS of the daily scale
factors with respect to the combined solution), are given
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Table 1. Average scale factor f, its reproducibility ¢ (weighted
RMS value with respect to the combined solution), maximum
vertical magnitudes due to ocean tide loading M" (in cm, from the
OTL model), correction of the vertical site displacement Ae" de-

rived from the average scale factor (in cm), average scale factors in
units of the reproducibility f, for the GPS sites AUCK, ALRT and
NRIL, and the OTL models derived from the FES95.2.1, FES99
and GOTO00.2 ocean tide models

GPS site Ocean tide f o MY Ae’ r
model [1] [1] [cm] [cm] [a]
AUCK FES95.2.1 0.91 + 0.092 5.13 —0.46 —-0.98
FES99 0.95 + 0.096 4.90 —-0.25 —0.52
GOT00.2 0.95 + 0.099 4.61 —-0.23 —-0.51
ALRT FES95.2.1 1.32 +0.345 0.56 0.18 0.93
FES99 1.21 +0.316 0.95 0.20 0.67
GOT00.2 1.24 +0.314 0.62 0.15 0.76
NRIL FES95.2.1 —1.47 + 1.618 0.78 -1.93 —1.53
FES99 —-1.55 + 1.654 0.79 —-2.01 —1.54
GOT00.2 —-1.61 + 1.734 0.72 —1.88 —-1.51

in Table 1. In addition, the maximum vertical magni-
tudes of site displacements due to OTL, M"Y, and the
magnitude correction, Ae', derived from the average
scale factor are given in cm. The last column in Table 1
gives the scale factor in units of the reproducibility, f,.

The GPS site AUCK shows an average OTL scale
factor close to unity and a very good reproducibility of
about 0.1 for all three models. The scale factors are
within the one-sigma interval. The loading signal is
highly significant (up to 5 cm; see e.g. Fig. 9a) and
therefore the formal RMS error of the estimated factors
is very small. The vertical magnitude correction Ae" for
the oldest of the three models, FES95.2.1, is, at —4.6
mm, noticeably larger than those for the newer ones
(—=2.5 mm for FES99 and —2.3 mm for GOT00.2).

The average loading factors f for the site ALRT are
also around unity. The modest reproducibility of about
£ 0.3 can be explained by the OTL effect, which is 10
times smaller than that of the site AUCK (see Fig. 9c).
The significant sub-daily differences between the vertical
site displacements extracted from the three OTL models
do not result in significant differences between the daily
estimated scale factors. The factors represent mean
values over an interval of one day. Therefore, they are
only able to absorb the mean value of unmodeled sub-
daily variations in site displacements. The corrections
Ae" for the vertical magnitude derived from the average
scale factors for ALRT are smaller than the corrections
for AUCK (see Table 1). The scale factors are within the
one-sigma interval. We therefore conclude that the used
OTL models for the GPS sites AUCK and ALRT are
confirmed by the GPS data.

The site displacements for NRIL are very small
during the time interval considered (up to 8 mm from
peak to peak; Fig. 9¢). Consequently, the resulting scale
factors show more pronounced variations, of 4+ 1.7 (due
to larger formal errors). Nevertheless, the significant
offset from 1 of about —2.5, which is 1.5 times larger
than the reproducibility, seems to reveal a modeling
problem at this site, which may be due to the site’s close
proximity to the Arctic Ocean. The Arctic tides depend
on hydrodynamic modeling only. Altimeter measure-
ments from TOPEX/Poseidon, which are very important
for model accuracy, are not available for that region.

Furthermore, we compared the

scale factors of

different GPS sites to check whether the scale factor
absorbs effects other than OTL, e.g. solid-Earth tides.
The effect of solid-Earth tides depends on the longitude
and latitude of the GPS site considered. The longitude
of the site influences only the timing, i.e. the phase of a
constituent (see e.g. Vanicek and Krakiwsky 1986).
Therefore, a model error in solid-Earth tides should be
the same for all sites located at the same latitude.
However, we did not observe such characteristics. The
daily estimated scale factors of GPS sites located at the
same latitude do not reveal any significant common
pattern.

The OTL effect, on the other hand, does not depend
on the geographical location but on the distribution of
water and land masses on the Earth’s surface. Therefore,
the OTL effect, as well as model errors, will be the same
for sites located close to each other. One example is
given in Fig. 10, which shows the scale factors estimated
for the sites USUD (Usuda) and TSKB (Tsukuba) in
Japan using the GOT00.2 model. The OTL models give
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Fig. 10. Daily site-specific scale factors for OTL with formal RMS
errors for the sites USUD and TSKB estimated using the GOT00.2
ocean tide model



roughly the same values for both sites. The maximum
vertical magnitude of site displacements due to OTL for
TSKB, located on the coast, may reach 1.9 cm. For the
site USUD, lying 150 km inland from the coast, the
maximal vertical magnitude reaches 1.6 cm.

We observed a significant common pattern of the
daily estimated scale factors for both sites. We found the
same effect when comparing other GPS sites located
close to each other. We therefore conclude that the scale
factors primarily absorb OTL effects. Furthermore, a
period of about 15 days could be observed for the scale
factors shown in Fig. 10. This period may indicate a
modeling problem, e.g. a phase shift in one of the con-
stituents. A phase shift in, for example, S, or M, may
result in a period of about 15 days for the daily scale
factors due to the beat frequency of 1/14.8 days between
these two constituents.

In summary, none of the three OTL models consid-
ered here shows significant discrepancies from the pre-
dicted OTL effects for most of the 138 processed GPS
sites, except for some outliers such as the sites NRIL and
RAMO. As expected, the site displacements due to OTL
extracted from the recent FES99 and GOTO00.2 ocean
tide models are slightly better confirmed by the GPS
data than are those extracted from the FES95.2.1 model.

6.3 Several effects on the estimation of the scale factor for
OTL

This section briefly addresses several effects on the
estimation of the scale factors, namely effects due to the
observation interval, aliasing due to the GPS satellite
orbital period, and the correlation with the tropospheric
zenith path delay.

Our data analysis is intended to be a first ‘quick-look’
study rather than an intensive analysis. Therefore, only
three OTL are used, and a relatively short observation
interval of about seven weeks in February/March 2003 is
processed. Due to the superposition of tidal constituents
and the resulting beat frequencies of about 1/200 days
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Fig. 11. Differences between the vertical OTL displacements obtained
from the FES99 and GOTO00.2 ocean tide models for the GPS site
ALRT
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and greater, the scale factors may change depending on
the time interval used. For further studies, a much
longer time period (e.g. several years) should be con-
sidered.

Another aspect to consider is tidal aliasing due to the
satellite orbital period (or twice that period). Due to the
2:1 commensurability of the orbital period of the GPS
satellites and the sidereal day, the partial tides K| and K>
are highly correlated with the orbital period. Therefore,
it is, in principle, not possible to derive OTL parameters
for these tides from GPS measurements, as, for example,
Kirchner (2001) and Schenewerk et al. (2001) have al-
ready shown. This situation could be improved by using
data from GLONASS satellites in a combined GPS-
GLONASS data processing, because the revolution
period of the GLONASS satellites is about 11 hours 16
minutes, outside the 2:1 commensurability (Rothacher
1998). Also, the new Galileo satellite system may help to
distinguish between orbital and tidal effects.

The high correlation of vertical site displacements
and tropospheric zenith path delays is well known, and
has to be considered for the estimation of OTL param-
eters (see e.g. Kirchner 2001; Khan Scherneck, 2002; Vey
et al. 2002). An unmodeled sub-daily loading effect may
seriously affect the estimated troposphere parameters. In
our GPS analysis, we solved for site coordinates and 12
troposphere parameters for each site per day. Due to this
solution strategy, the tropospheric zenith path delay is
capable of partially absorbing OTL effects.

To demonstrate this mechanism, we compared the
vertical site displacements attributed to OTL of one sta-
tion when using two tide models. This is shown in
Figs. 11 and 12 for the GPS site ALRT. Figure 11 shows
the differences of the ocean loading displacements derived
from the FES99 and GOTO00.2 ocean tide models. The
corresponding differences of the troposphere parameters,
shown in Fig. 12, are mainly due to the loading dis-
placement differences. Both figures are highly correlated,
indicating that a major part of the unmodeled OTL
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Fig. 12. Differences between the troposphere parameters estimated by
introducing the loading displacements derived from the FES99 and
GOTO00.2 ocean tide models for the GPS site ALRT
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Fig. 13. Correlation diagram of the differences of the vertical site
displacements due to OTL and of the troposphere parameters
estimated using the FES99 and GOTO00.2 tide models for the GPS
site ALRT; correlation coefficient = 0.889

displacements is absorbed by the troposphere parameters.
Figure 13 shows the corresponding correlation diagram
of vertical site displacements and troposphere parameters
for the site ALRT. We obtain a correlation coefficient of
0.889, which is remarkably high.

The estimated scale factors for OTL displacements
are not capable of absorbing modeling errors on a sub-
daily level. Troposphere parameters with a high tem-
poral resolution will always be affected by unmodeled
vertical site displacements.

Although the horizontal displacements due to OTL
are small compared to the vertical displacements, a
model error in the horizontal plane would be recogniz-
able within the same order of magnitude as an error in
the vertical direction due to the characteristics of the
GPS: the horizontal site coordinates are estimated much
better (by a factor of about three) than the vertical
components. Therefore, the horizontal site displace-
ments due to OTL should always also be taken into
account in a GPS analysis. The horizontal components
are not correlated with the tropospheric zenith path
delay. Therefore, a validation of OTL models analyzing
the horizontal components separately from the vertical
components would make sense.

7 Conclusions

The method described for validating global OTL models
is well suited for checking the site displacements
predicted by these models by means of GPS observa-
tions. Site-specific scale factors were estimated for each
OTL model. These scale factors allow a validation of
OTL models in a general sense. Just one additional
parameter for each station has to be estimated, together
with all other parameters in one program run. This
simple validation method does not, however, allow
model discrepancies to be assigned to specific harmon-
ics, or to the amplitude or the phase of a tidal
constituent. In order to obtain this information from

GPS observations, all tidal amplitude and phase com-
ponents for each station have to be estimated.

The results presented show, in general, a good
agreement between the FES95.2.1, FES99, and
GOTO00.2 ocean tide models and the actual site dis-
placements emerging from our GPS analysis. We esti-
mated scaling factors close to unity for most of the 138
globally distributed IGS tracking sites, indicating that
the used ocean tide models are confirmed by the GPS
data. Factors deviating significantly from the value of
unity are found in the inner part of the Eurasian plate,
where the OTL effect is very small and the scale factors
are poorly determined.

The FES95.2.1 model reveals small discrepancies in
the area around the Indonesian archipelago, which
might be due to the assimilated TOPEX/Poseidon
altimeter data not completely covering the Indonesian
area. Parameters correlated with station height and set-
up with a high time resolution (e.g. tropospheric zenith
delays) are affected by unmodeled sub-daily OTL site
displacements. Therefore, the use of the best-possible
OTL models is essential for zenith path delay estimations
and their correct (e.g. meteorological) interpretation.

By estimating a triplet of scale factors for each site,
one for each component (north—south, east—west, verti-
cal), it would be possible to validate the horizontal and
vertical components of the OTL models separately.
Horizontal site displacements, which are not correlated
with tropospheric zenith path delays, seem to be well
suited to such an investigation.

Our results seem to indicate that an attempt to re-
trieve GPS-based OTL corrections as part of a general
parameter adjustment process could make sense. In
principle, it should be possible to estimate site-specific
amplitudes and phases for each of the main constitu-
ents on the basis of GPS data, except for the tidal
waves K; and K, with periods commensurate with the
GPS satellites’ orbital period (Schenewerk et al. 2001)
(a situation that could be improved by using GLON-
ASS or Galileo orbits). Such an analysis would be very
interesting from the scientific point of view, but it
would also be most demanding in terms of computa-
tional resources.
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