616 research outputs found
Advancing subsurface biosphere and paleoclimate research: ECORDâICDPâDCOâJ-DESCâMagellanPlus Workshop Series Program Report
The proper pre-drilling preparation, on-site acquisition and post-drilling preservation of high-qualitysubsurface samples are crucial to ensure significant progress in the scientifically and societally important areasof subsurface biosphere and paleoclimate research. Two of the four research themes of IODP and ICDPand one of the four research areas of the Deep Carbon Observatory (DCO) focus on the subsurface biosphere.Increasing understanding of paleoclimate is a central goal of IODP and incorporated within the scope of theIMPRESS program, the successor of the IMAGES program. Therefore, the goal of our IODPâICDPâDCOâJDESCâMagellanPlus-sponsored workshop was to help advance deep biosphere and paleoclimate research byidentifying needed improvements in scientific drilling planning and available technology, sample collection andinitial analysis, and long-term storage of subsurface samples and data. Success in these areas will (a) avoidbiological and other contamination during drilling, sampling, storage and shipboard/shore-based experiments;(b) build a repository and database of high-quality subsurface samples for microbiological and paleoclimate researchavailable for the scientific community world-wide over the next decades; and (c) standardize, as much aspossible, microbiological and paleoclimate drilling, sampling and storage workflows to allow results and datato be comparable across both space and time. A result of this workshop is the development and suggested implementationof new advanced methods and technologies to collect high-quality samples and data for the deepbiosphere and paleoclimate scientific communities to optimize expected substantial progress in these fields. Themembers of this workshop will enhance communication within the scientific drilling community by crafting ahandbook focused on pre-drilling, drilling and post-drilling operations
Design by immersion: A transdisciplinary approach to problem-driven visualizations
While previous work exists on how to conduct and disseminate insights from problem-driven visualization work and design studies, the literature does not address how to accomplish these goals in transdisciplinary teams in ways that advance all disciplines involved. In this paper we introduce and define a new methodological paradigm we call design by immersion, which provides an alternative perspective on problem-driven visualization work. Design by immersion embeds transdisciplinary experiences at the center of the visualization process by having visualization researchers participate in the work of the target domain (or domain experts participate in visualization research). Based on our own combined experiences of working on cross-disciplinary, problem-driven visualization projects, we present six case studies that expose the opportunities that design by immersion enables, including (1) exploring new domain-inspired visualization design spaces, (2) enriching domain understanding through personal experiences, and (3) building strong transdisciplinary relationships. Furthermore, we illustrate how the process of design by immersion opens up a diverse set of design activities that can be combined in different ways depending on the type of collaboration, project, and goals. Finally, we discuss the challenges and potential pitfalls of design by immersion
Age-related Changes in the Cellular Level of Amylase and Protein Synthesis in the Rat Parotid Gland
Age-related changes in the cellular content of secretory proteins and protein synthesis were studied in parotid glands of rats of various ages. The secretory protein content (determined by measuring the level of α-amylase activity) and the synthesis of proteins (assayed by the rate of incorporation of 3H-leucine into acid-insoluble proteins) decline with increasing age. Morphological and radioautographic studies of the gland indicate that the decline in protein synthesis is due to the reduction in the ability of secretory cells to synthesize proteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67245/2/10.1177_00220345810600031401.pd
Recommended from our members
Constraint-Based Breakpoints for Responsive Visualization Design and Development
This paper introduces constraint-based breakpoints, a technique for designing responsive visualizations for a wide variety of screen sizes and datasets. Breakpoints in responsive visualization define when different visualization designs are shown. Conventionally, breakpoints are static, pre-defined widths, and as such do not account for changes to the visualized dataset or visualization parameters. To guarantee readability and efficient use of space across datasets, these static breakpoints would require manual updates. Constraint-based breakpoints solve this by evaluating visualization-specific constraints on the size of visual elements, overlapping elements, and the aspect ratio of the visualization and available space. Once configured, a responsive visualization with constraint-based breakpoints can adapt to different screen sizes for any dataset. We describe a framework that guides designers in creating a stack of visualization designs for different display sizes and defining constraints for each of these designs. We demonstrate constraint-based breakpoints for different data types and their visualizations: geographic data (choropleth map, proportional circle map, Dorling cartogram, hexagonal grid map, bar chart, waffle chart), network data (node-link diagram, adjacency matrix, arc diagram), and multivariate data (scatterplot, heatmap). Interactive demos and supplemental material are available at responsive-vis.github.io/breakpoints
Microbial ecology and biogeochemistry of hypersaline sediments in Orca Basin
In deep ocean hypersaline basins, the combination of high salinity, unusual ionic composition and anoxic conditions represents significant challenges for microbial life. We used geochemical porewater characterization and DNA sequencing based taxonomic surveys to enable environmental and microbial characterization of anoxic hypersaline sediments and brines in the Orca Basin, the largest brine basin in the Gulf of Mexico. Full-length bacterial 16S rRNA gene clone libraries from hypersaline sediments and the overlying brine were dominated by the uncultured halophilic KB1 lineage, Deltaproteobacteria related to cultured sulfate-reducing halophilic genera, and specific lineages of heterotrophic Bacteroidetes. Archaeal clones were dominated by members of the halophilic methanogen genus Methanohalophilus, and the ammonia-oxidizing Marine Group I (MG-I) within the Thaumarchaeota. Illumina sequencing revealed higher phylum- and subphylum-level complexity, especially in lower-salinity sediments from the Orca Basin slope. Illumina and clone library surveys consistently detected MG-I Thaumarchaeota and halotolerant Deltaproteobacteria in the hypersaline anoxic sediments, but relative abundances of the KB1 lineage differed between the two sequencing methods. The stable isotopic composition of dissolved inorganic carbon and methane in porewater, and sulfate concentrations decreasing downcore indicated methanogenesis and sulfate reduction in the anoxic sediments. While anaerobic microbial processes likely occur at low rates near their maximal salinity thresholds in Orca Basin, long-term accumulation of reaction products leads to high methane concentrations and reducing conditions within the Orca Basin brine and sediments
The Enduring Questions: What's for Dinner? Where's My Knife? âŠand Can I Use My Fingers? (Unanswered) Questions Related to Organic Matter and Microbes in Marine Sediments
Heterotrophic microbial communities play key roles in processing and remineralizing organic matter in marine sediments: they are the âfinal gatekeepersâ that determine the types and quantity of organicmatter that is ultimately buried in sedimentsâprocesses important to our understanding of past global environments, as well as to the production of petroleum products that still fuel much of modern society. These communitiesâ capabilities also help us understand the energetic and metabolic boundaries of life. Work over the past decades has revealed much information about sedimentary microbial communities: their overall composition (Bacteria and Archaea), the sequence of terminal respiration processes occurring with progressive burial depth in sediments, and the depth to which they can be detected; research on the members and metabolism in the âdeep biosphereâ has assumed a central position in organic geochemistry, environmental microbiology, and molecular ecology (Orcutt et al., 2013; DâHondt et al., 2019)
Microbial conversion of inorganic carbon to dimethyl sulfide in anoxic lake sediment (PluĂsee, Germany)
In anoxic environments, volatile methylated sulfides like methanethiol (MT) and dimethyl sulfide (DMS) link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. When studying the effect of temperature on hydrogenotrophic microbial activity, we observed formation of DMS in anoxic sediment of Lake PluĂsee at 55 °C. Subsequent experiments strongly suggested that the formation of DMS involves fixation of bicarbonate via a reductive pathway in analogy to methanogenesis and engages methylation of MT. DMS formation was enhanced by addition of bicarbonate and further increased when both bicarbonate and H<sub>2</sub> were supplemented. Inhibition of DMS formation by 2-bromoethanesulfonate points to the involvement of methanogens. Compared to the accumulation of DMS, MT showed the opposite trend but there was no apparent 1:1 stoichiometric ratio between both compounds. Both DMS and MT had negative &delta;<sup>13</sup>C values of â62&permil; and â55&permil;, respectively. Labeling with NaH<sup>13</sup>CO<sub>3</sub> showed more rapid incorporation of bicarbonate into DMS than into MT. The stable carbon isotopic evidence implies that bicarbonate was fixed via a reductive pathway of methanogenesis, and the generated methyl coenzyme M became the methyl donor for MT methylation. Neither DMS nor MT accumulation were stimulated by addition of the methyl-group donors methanol and syringic acid or by the methyl-group acceptor hydrogen sulphide. The source of MT was further investigated in a H<sub>2</sub><sup>35</sup>S labeling experiment, which demonstrated a microbially-mediated process of hydrogen sulfide methylation to MT that accounted for only <10% of the accumulation rates of DMS. Therefore, the major source of the <sup>13</sup>C-depleted MT was neither bicarbonate nor methoxylated aromatic compounds. Other possibilities for isotopically depleted MT, such as other organic precursors like methionine, are discussed. This DMS-forming pathway may be relevant for anoxic environments such as hydrothermally influenced sediments and fluids and sulfate-methane transition zones in marine sediments
Improving the coexistence of offshore wind farms and shipping: an international comparison of navigational risk assessment processes
The continued growth and evolution of the offshore wind industry, and the emergence of other novel marine uses such as wave and tidal generators, have upped the ante for spatial planners, as well as consenting and approval authorities in various coastal states. These stakeholders rely on processes such as navigational risk assessments (NRAs) to balance safety and efficiency requirements and to make optimal decisions over use of space. Given the increasingly complex and crowded seascape, however, there are some apprehensions about potential shortcomings in these NRA processes. There is also some concern that these inadequacies may lead to unsafe or inefficient marine spatial use. To understand how NRA processes can be improved further, a literature review is conducted, followed by a survey of respondents who are involved in the planning, consenting and/or approval of offshore wind farms across seven different countries. A summary of the NRA processes in these seven countries is presented, and several shortcomings are identified. Based on the findings of the survey, a list of recommendations is presented to enhance existing NRA processesand to improve the coexistence of shipping and offshore wind farms (OWFs)
- âŠ