23,237 research outputs found

    Hydrophobic interactions with coarse-grained model for water

    Full text link
    Integral equation theory is applied to a coarse-grained model of water to study potential of mean force between hydrophobic solutes. Theory is shown to be in good agreement with the available simulation data for methane-methane and fullerene-fullerene potential of mean force in water; the potential of mean force is also decomposed into its entropic and enthalpic contributions. Mode coupling theory is employed to compute self-diffusion coefficient of water, as well as diffusion coefficient of a dilute hydrophobic solute; good agreement with molecular dynamics simulation results is found

    Dissipation Layers in Rayleigh-B\'{e}nard Convection: A Unifying View

    Full text link
    Boundary layers play an important role in controlling convective heat transfer. Their nature varies considerably between different application areas characterized by different boundary conditions, which hampers a uniform treatment. Here, we argue that, independent from boundary conditions, systematic dissipation measurements in Rayleigh-B\'enard convection capture the relevant near-wall structures. By means of direct numerical simulations with varying Prandtl numbers, we demonstrate that such dissipation layers share central characteristics with classical boundary layers, but, in contrast to the latter, can be extended naturally to arbitrary boundary conditions. We validate our approach by explaining differences in scaling behavior observed for no-slip and stress-free boundaries, thus paving the way to an extension of scaling theories developed for laboratory convection to a broad class of natural systems

    EEG source imaging assists decoding in a face recognition task

    Full text link
    EEG based brain state decoding has numerous applications. State of the art decoding is based on processing of the multivariate sensor space signal, however evidence is mounting that EEG source reconstruction can assist decoding. EEG source imaging leads to high-dimensional representations and rather strong a priori information must be invoked. Recent work by Edelman et al. (2016) has demonstrated that introduction of a spatially focal source space representation can improve decoding of motor imagery. In this work we explore the generality of Edelman et al. hypothesis by considering decoding of face recognition. This task concerns the differentiation of brain responses to images of faces and scrambled faces and poses a rather difficult decoding problem at the single trial level. We implement the pipeline using spatially focused features and show that this approach is challenged and source imaging does not lead to an improved decoding. We design a distributed pipeline in which the classifier has access to brain wide features which in turn does lead to a 15% reduction in the error rate using source space features. Hence, our work presents supporting evidence for the hypothesis that source imaging improves decoding

    Dynamic glass transition: bridging the gap between mode-coupling theory and the replica approach

    Full text link
    We clarify the relation between the ergodicity breaking transition predicted by mode-coupling theory and the so-called dynamic transition predicted by the static replica approach. Following Franz and Parisi [Phys. Rev. Lett. 79, 2486 (1997)], we consider a system of particles in a metastable state characterized by non-trivial correlations with a quenched configuration. We show that the assumption that in a metastable state particle currents vanish leads to an expression for the replica off-diagonal direct correlation function in terms of a replica off-diagonal static four-point correlation function. A factorization approximation for this function results in an approximate closure for the replica off-diagonal direct correlation function. The replica off-diagonal Ornstein-Zernicke equation combined with this closure coincides with the equation for the non-ergodicity parameter derived using the mode-coupling theory.Comment: revised version; to be published in EP

    Role of structural relaxations and vibrational excitations in the high-frequency dynamics of liquids and glasses

    Full text link
    We present theoretical investigation on the high-frequency collective dynamics in liquids and glasses at microscopic length scales and terahertz frequency region based on the mode-coupling theory for ideal liquid-glass transition. We focus on recently investigated issues from inelastic-X-ray-scattering and computer-simulation studies for dynamic structure factors and longitudinal and transversal current spectra: the anomalous dispersion of the high-frequency sound velocity and the nature of the low-frequency excitation called the boson peak. It will be discussed how the sound mode interferes with other low-lying modes present in the system. Thereby, we provide a systematic explanation of the anomalous sound-velocity dispersion in systems -- ranging from high temperature liquid down to deep inside the glass state -- in terms of the contributions from the structural-relaxation processes and from vibrational excitations called the anomalous-oscillation peak (AOP). A possibility of observing negative dispersion -- the {\em decrease} of the sound velocity upon increase of the wave number -- is argued when the sound-velocity dispersion is dominated by the contribution from the vibrational dynamics. We also show that the low-frequency excitation, observable in both of the glass-state longitudinal and transversal current spectra at the same resonance frequency, is the manifestation of the AOP. As a consequence of the presence of the AOP in the transversal current spectra, it is predicted that the transversal sound velocity also exhibits the anomalous dispersion. These results of the theory are demonstrated for a model of the Lennard-Jones system.Comment: 25 pages, 22 figure

    Structural and Dynamical Anomalies of a Gaussian Core Fluid: a Mode Coupling Theory Study

    Full text link
    We present a theoretical study of transport properties of a liquid comprised of particles uist1:/home/sokrates/egorov/oldhome/Pap41/Submit > m abs.tex We present a theoretical study of transport properties of a liquid comprised of particles interacting via Gaussian Core pair potential. Shear viscosity and self-diffusion coefficient are computed on the basis of the mode-coupling theory, with required structural input obtained from integral equation theory. Both self-diffusion coefficient and viscosity display anomalous density dependence, with diffusivity increasing and viscosity decreasing with density within a particular density range along several isotherms below a certain temperature. Our theoretical results for both transport coefficients are in good agreement with the simulation data

    Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon

    Get PDF
    We employ the quantum state of a single photon entangled with the vacuum (|1,0>-|0,1>), generated by a photon incident upon a symmetric beam splitter, to teleport single-mode quantum states of light by means of the Bennett protocol. Teleportation of coherent states results in truncation of their Fock expansion to the first two terms. We analyze the teleported ensembles by means of homodyne tomography and obtain fidelities of up to 99 per cent for low source state amplitudes. This work is an experimental realization of the quantum scissors device proposed by Pegg, Phillips and Barnett (Phys. Rev. Lett. 81, 1604 (1998)

    Spatial correlations in sheared isothermal liquids : From elastic particles to granular particles

    Full text link
    Spatial correlations for sheared isothermal elastic liquids and granular liquids are theoretically investigated. Using the generalized fluctuating hydrodynamics, correlation functions for both the microscopic scale and the macroscopic scale are obtained. The existence of the long-range correlation functions obeying power laws has been confirmed. The validity of our theoretical predictions have been verified from the molecular dynamics simulation.Comment: 34 pages, 12 figure

    A spiral-like disk of ionized gas in IC 1459: Signature of a merging collision

    Get PDF
    The authors report the discovery of a large (15 kpc diameter) H alpha + (NII) emission-line disk in the elliptical galaxy IC 1459, showing weak spiral structure. The line flux peaks strongly at the nucleus and is more concentrated than the stellar continuum. The major axis of the disk of ionized gas coincides with that of the stellar body of the galaxy. The mass of the ionized gas is estimated to be approx. 1 times 10 (exp 5) solar mass, less than 1 percent of the total mass of gas present in IC 1459. The total gas mass of 4 times 10(exp 7) solar mass has been estimated from the dust mass derived from a broad-band color index image and the Infrared Astronomy Satellite (IRAS) data. The authors speculate that the presence of dust and gas in IC 1459 is a signature of a merger event
    • …
    corecore