28,470 research outputs found
EEG source imaging assists decoding in a face recognition task
EEG based brain state decoding has numerous applications. State of the art
decoding is based on processing of the multivariate sensor space signal,
however evidence is mounting that EEG source reconstruction can assist
decoding. EEG source imaging leads to high-dimensional representations and
rather strong a priori information must be invoked. Recent work by Edelman et
al. (2016) has demonstrated that introduction of a spatially focal source space
representation can improve decoding of motor imagery. In this work we explore
the generality of Edelman et al. hypothesis by considering decoding of face
recognition. This task concerns the differentiation of brain responses to
images of faces and scrambled faces and poses a rather difficult decoding
problem at the single trial level. We implement the pipeline using spatially
focused features and show that this approach is challenged and source imaging
does not lead to an improved decoding. We design a distributed pipeline in
which the classifier has access to brain wide features which in turn does lead
to a 15% reduction in the error rate using source space features. Hence, our
work presents supporting evidence for the hypothesis that source imaging
improves decoding
Dynamic glass transition: bridging the gap between mode-coupling theory and the replica approach
We clarify the relation between the ergodicity breaking transition predicted
by mode-coupling theory and the so-called dynamic transition predicted by the
static replica approach. Following Franz and Parisi [Phys. Rev. Lett. 79, 2486
(1997)], we consider a system of particles in a metastable state characterized
by non-trivial correlations with a quenched configuration. We show that the
assumption that in a metastable state particle currents vanish leads to an
expression for the replica off-diagonal direct correlation function in terms of
a replica off-diagonal static four-point correlation function. A factorization
approximation for this function results in an approximate closure for the
replica off-diagonal direct correlation function. The replica off-diagonal
Ornstein-Zernicke equation combined with this closure coincides with the
equation for the non-ergodicity parameter derived using the mode-coupling
theory.Comment: revised version; to be published in EP
Hydrophobic interactions with coarse-grained model for water
Integral equation theory is applied to a coarse-grained model of water to
study potential of mean force between hydrophobic solutes. Theory is shown to
be in good agreement with the available simulation data for methane-methane and
fullerene-fullerene potential of mean force in water; the potential of mean
force is also decomposed into its entropic and enthalpic contributions. Mode
coupling theory is employed to compute self-diffusion coefficient of water, as
well as diffusion coefficient of a dilute hydrophobic solute; good agreement
with molecular dynamics simulation results is found
Structural and Dynamical Anomalies of a Gaussian Core Fluid: a Mode Coupling Theory Study
We present a theoretical study of transport properties of a liquid comprised
of particles uist1:/home/sokrates/egorov/oldhome/Pap41/Submit > m abs.tex We
present a theoretical study of transport properties of a liquid comprised of
particles interacting via Gaussian Core pair potential. Shear viscosity and
self-diffusion coefficient are computed on the basis of the mode-coupling
theory, with required structural input obtained from integral equation theory.
Both self-diffusion coefficient and viscosity display anomalous density
dependence, with diffusivity increasing and viscosity decreasing with density
within a particular density range along several isotherms below a certain
temperature. Our theoretical results for both transport coefficients are in
good agreement with the simulation data
Synchrotron imaging assessment of bone quality
Bone is a complex hierarchical structure and its principal function is to resist mechanical forces and fracture. Bone strength depends not only on the quantity of bone tissue but also on the shape and hierarchical structure. The hierarchical levels are interrelated, especially the micro-architecture, collagen and mineral components; hence analysis of their specific roles in bone strength and stiffness is difficult. Synchrotron imaging technologies including micro-CT and small/wide angle X-Ray scattering/diffraction are becoming increasingly popular for studying bone because the images can resolve deformations in the micro-architecture and collagen-mineral matrix under in situ mechanical loading. Synchrotron cannot be directly applied in-vivo due to the high radiation dose but will allow researchers to carry out systematic multifaceted studies of bone ex-vivo. Identifying characteristics of aging and disease will underpin future efforts to generate novel devices and interventional therapies for assessing and promoting healthy aging. With our own research work as examples, this paper introduces how synchrotron imaging technology can be used with in-situ testing in bone research
A spiral-like disk of ionized gas in IC 1459: Signature of a merging collision
The authors report the discovery of a large (15 kpc diameter) H alpha + (NII) emission-line disk in the elliptical galaxy IC 1459, showing weak spiral structure. The line flux peaks strongly at the nucleus and is more concentrated than the stellar continuum. The major axis of the disk of ionized gas coincides with that of the stellar body of the galaxy. The mass of the ionized gas is estimated to be approx. 1 times 10 (exp 5) solar mass, less than 1 percent of the total mass of gas present in IC 1459. The total gas mass of 4 times 10(exp 7) solar mass has been estimated from the dust mass derived from a broad-band color index image and the Infrared Astronomy Satellite (IRAS) data. The authors speculate that the presence of dust and gas in IC 1459 is a signature of a merger event
Dissipation Layers in Rayleigh-B\'{e}nard Convection: A Unifying View
Boundary layers play an important role in controlling convective heat
transfer. Their nature varies considerably between different application areas
characterized by different boundary conditions, which hampers a uniform
treatment. Here, we argue that, independent from boundary conditions,
systematic dissipation measurements in Rayleigh-B\'enard convection capture the
relevant near-wall structures. By means of direct numerical simulations with
varying Prandtl numbers, we demonstrate that such dissipation layers share
central characteristics with classical boundary layers, but, in contrast to the
latter, can be extended naturally to arbitrary boundary conditions. We validate
our approach by explaining differences in scaling behavior observed for no-slip
and stress-free boundaries, thus paving the way to an extension of scaling
theories developed for laboratory convection to a broad class of natural
systems
Deep far infrared ISOPHOT survey in "Selected Area 57", I. Observations and source counts
We present here the results of a deep survey in a 0.4 sq.deg. blank field in
Selected Area 57 conducted with the ISOPHOT instrument aboard ESAs Infrared
Space Observatory (ISO) at both 60 um and 90 um. The resulting sky maps have a
spatial resolution of 15 x 23 sq.arcsec. per pixel which is much higher than
the 90 x 90 sq.arcsec. pixels of the IRAS All Sky Survey. We describe the main
instrumental effects encountered in our data, outline our data reduction and
analysis scheme and present astrometry and photometry of the detected point
sources. With a formal signal to noise ratio of 6.75 we have source detection
limits of 90 mJy at 60 um and 50 mJy at 90 um. To these limits we find
cumulated number densities of 5+-3.5 per sq.deg. at 60 um and 14.8+-5.0 per
sq.deg.at 90 um. These number densities of sources are found to be lower than
previously reported results from ISO but the data do not allow us to
discriminate between no-evolution scenarios and various evolutionary models.Comment: 15 pages, 11 figures, accepted by Astronomy & Astrophysic
Addressing and manipulation of individual hyperfine states in cold trapped molecular ions and application to HD^{+} frequency metrology
Advanced techniques for manipulation of internal states, standard in atomic
physics, are demonstrated for a charged molecular species for the first time.
We address individual hyperfine states of ro-vibrational levels of a diatomic
ion by optical excitation of individual hyperfine transitions, and achieve
controlled transfer of population into a selected hyperfine state. We use
molecular hydrogen ions (HD^{+}) as a model system and employ a novel
frequency-comb-based, continuous-wave 5 \mum laser spectrometer. The achieved
spectral resolution is the highest obtained so far in the optical domain on a
molecular ion species. As a consequence, we are also able to perform the most
precise test yet of the ab-initio theory of a molecule
The R-Process Alliance: A Comprehensive Abundance Analysis of HD 222925, a Metal-Poor Star with an Extreme R-Process Enhancement of [Eu/H] = -0.14
We present a detailed abundance analysis of the bright (V = 9.02), metal-poor
([Fe/H] = -1.47 +/- 0.08) field red horizontal-branch star HD 222925, which was
observed as part of an ongoing survey by the R-Process Alliance. We calculate
stellar parameters and derive abundances for 46 elements based on 901 lines
examined in a high-resolution optical spectrum obtained using the Magellan
Inamori Kyocera Echelle spectrograph. We detect 28 elements with 38 <= Z <= 90;
their abundance pattern is a close match to the Solar r-process component. The
distinguishing characteristic of HD 222925 is an extreme enhancement of
r-process elements ([Eu/Fe] = +1.33 +/- 0.08, [Ba/Eu] = -0.78 +/- 0.10) in a
moderately metal-poor star, so the abundance of r-process elements is the
highest ([Eu/H] = -0.14 +/- 0.09) in any known r-process-enhanced star. The
abundance ratios among lighter (Z <= 30) elements are typical for metal-poor
stars, indicating that production of these elements was dominated by normal
Type II supernovae, with no discernible contributions from Type Ia supernovae
or asymptotic giant branch stars. The chemical and kinematic properties of HD
222925 suggest it formed in a low-mass dwarf galaxy, which was enriched by a
high-yield r-process event before being disrupted by interaction with the Milky
Way.Comment: Accepted for publication in the Astrophysical Journal (17 pages, 4
figures, 3 tables
- …
