22 research outputs found

    Complex Interplay of Evolutionary Forces in the ladybird Homeobox Genes of Drosophila melanogaster

    Get PDF
    Tandemly arranged paralogous genes lbe and lbl are members of the Drosophila NK homeobox family. We analyzed population samples of Drosophila melanogaster from Africa, Europe, North and South America, and single strains of D. sechellia, D. simulans, and D. yakuba within two linked regions encompassing partial sequences of lbe and lbl. The evolution of lbe and lbl is highly constrained due to their important regulatory functions. Despite this, a variety of forces have shaped the patterns of variation in lb genes: recombination, intragenic gene conversion and natural selection strongly influence background variation created by linkage disequilibrium and dimorphic haplotype structure. The two genes exhibited similar levels of nucleotide diversity and positive selection was detected in the noncoding regions of both genes. However, synonymous variability was significantly higher for lbe: no nonsynonymous changes were observed in this gene. We argue that balancing selection impacts some synonymous sites of the lbe gene. Stability of mRNA secondary structure was significantly different between the lbe (but not lbl) haplotype groups and may represent a driving force of balancing selection in epistatically interacting synonymous sites. Balancing selection on synonymous sites may be the first, or one of a few such observations, in Drosophila. In contrast, recurrent positive selection on lbl at the protein level influenced evolution at three codon sites. Transcription factor binding-site profiles were different for lbe and lbl, suggesting that their developmental functions are not redundant. Combined with our previous results on nucleotide variation in esterase and other homeobox genes, these results suggest that interplay of balancing and directional selection may be a general feature of molecular evolution in Drosophila and other eukaryote genomes

    Growth inhibition and changes in morphology and actin distribution in Acetabularia acetabulum by phalloidin and phalloidin derivatives

    No full text
    Effects on morphology and microfilament structure caused by phalloidin, phallacidin, and some semisynthetic phalloidin derivatives were studied in vegetative cells of the green alga Acetabularia acetabulum (L.) Silva. All phalloidin derivatives (except for phalloidin itself) caused growth stop of the alga after 1 day and (except for the fluorescein-labeled phalloidin) death of the cells after 4-7 days. Hair whorl tip growth and morphology as screened by light microscopy, as well as microfilament structure in tips, suggested that growth stop is correlated with a disorganization of actin filaments similar to that recently described for jasplakinolide (H. Sawitzky, S. Liebe, J. Willingale-Theune, D. Menzel, European Journal of Cell Biology 78: 424-433, 1999). Using rabbit muscle actin as a model target protein, we found that the toxic effects in vivo did not correlate with actin affinity values, suggesting that permeation through membranes must play a role. Indeed, the most lipophilic phalloidin derivatives benzoylphalloidin and dithiolanophalloidin were the most active in causing growth stop at ca. 100 microM. In comparison to the concentration of jasplakinolide required to cause similar effects (<3 microM), the two most active phalloidin derivatives exhibited an activity ca. 30 times lower. Nonetheless, lipophilic phalloidin derivatives can be used in algae, and probably also other cells, to modulate actin dynamics in vivo. In addition, we found that the fluorescent fluorescein isothiocyanate-phalloidin is able to enter living algal cells and stains actin structures brightly. Since it does not suppress actin dynamics, we suggest fluorescein isothiocyanate-phalloidin as a tool for studying rearrangements of actin structures in live cells, e.g., by confocal laser scanning microscopy

    The extent of linkage disequilibrium in Arabidopsis thaliana

    No full text
    Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci(1). The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped(2). Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing(3). Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination(4-6). Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana
    corecore