94 research outputs found

    Test of Lorentz Symmetry by using a 3He/129Xe Co-Magnetometer

    Full text link
    To test Lorentz symmetry we used a 3He/129Xe co-magnetometer. We will give a short summary of our experimental setup and the results of our latest measurements. We obtained preliminary results for the equatorial component of the background field interacting with the spin of the bound neutron: b_n < 3.72 x 10^(-32) GeV (95 C.L.).Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28 - July 2, 201

    Limit on Lorentz and CPT violation of the bound Neutron Using a Free Precession 3He/129Xe co-magnetometer

    Full text link
    We report on the search for Lorentz violating sidereal variations of the frequency difference of co-located spin-species while the Earth and hence the laboratory reference frame rotates with respect to a relic background field. The co-magnetometer used is based on the detection of freely precessing nuclear spins from polarized 3He and 129Xe gas samples using SQUIDs as low-noise magnetic flux detectors. As result we can determine the limit for the equatorial component of the background field interacting with the spin of the bound neutron to be bn < 3.7 x 10^{-32} GeV (95 C.L.).Comment: 5 pages, 4 figure

    Universal finite-size scaling analysis of Ising models with long-range interactions at the upper critical dimensionality: Isotropic case

    Full text link
    We investigate a two-dimensional Ising model with long-range interactions that emerge from a generalization of the magnetic dipolar interaction in spin systems with in-plane spin orientation. This interaction is, in general, anisotropic whereby in the present work we focus on the isotropic case for which the model is found to be at its upper critical dimensionality. To investigate the critical behavior the temperature and field dependence of several quantities are studied by means of Monte Carlo simulations. On the basis of the Privman-Fisher hypothesis and results of the renormalization group the numerical data are analyzed in the framework of a finite-size scaling analysis and compared to finite-size scaling functions derived from a Ginzburg-Landau-Wilson model in zero mode (mean-field) approximation. The obtained excellent agreement suggests that at least in the present case the concept of universal finite-size scaling functions can be extended to the upper critical dimensionality.Comment: revtex4, 10 pages, 5 figures, 1 tabl

    Critical Casimir forces and adsorption profiles in the presence of a chemically structured substrate

    Full text link
    Motivated by recent experiments with confined binary liquid mixtures near demixing, we study the universal critical properties of a system, which belongs to the Ising universality class, in the film geometry. We employ periodic boundary conditions in the two lateral directions and fixed boundary conditions on the two confining surfaces, such that one of them has a spatially homogeneous adsorption preference while the other one exhibits a laterally alternating adsorption preference, resembling locally a single chemical step. By means of Monte Carlo simulations of an improved Hamiltonian, so that the leading scaling corrections are suppressed, numerical integration, and finite-size scaling analysis we determine the critical Casimir force and its universal scaling function for various values of the aspect ratio of the film. In the limit of a vanishing aspect ratio the critical Casimir force of this system reduces to the mean value of the critical Casimir force for laterally homogeneous ++ and +- boundary conditions, corresponding to the surface spins on the two surfaces being fixed to equal and opposite values, respectively. We show that the universal scaling function of the critical Casimir force for small but finite aspect ratios displays a linear dependence on the aspect ratio which is solely due to the presence of the lateral inhomogeneity. We also analyze the order-parameter profiles at criticality and their universal scaling function which allows us to probe theoretical predictions and to compare with experimental data.Comment: revised version, section 5.2 expanded; 53 pages, 12 figures, iopart clas

    Stoichiometry of HLA Class II-Invariant Chain Oligomers

    Get PDF
    BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii

    Trends Cell Biol.

    No full text
    A novel mechanism, centered on the Polo-like kinase Plo1p and Dma1p - a protein with a RING finger and an FHA-domain - prevents cytokinesis as long as the spindle checkpoint is active
    • …
    corecore