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from our workgroup in the same cohort (Krzyżanowska 
et al. in Psychiatry Res 241:43–46, 4) suggested a positive 
impact of microglia on ribosomal DNA transcription in 
DRN neurons in the non-suicidal depressed subgroup, but 
not in depressed suicidal cases. Therefore, the interaction 
between microglia and neurons in the DRN may be poten-
tially involved in opposite ways regarding suicide facilita-
tion and prevention in the tested subgroups of depressed 
patients.

Keywords Postmortem · Suicide · Dorsal raphe nucleus · 
Microglia

Introduction

Disturbances of the central serotonergic system are impli-
cated in a multifaceted way in suicidal behaviour (for 
reviews, see: [1, 2]), which has been proposed to be an 
independent mental disorder in the fifth edition of the 
Diagnostic and Statistical Manual of Mental Disorders—
DSM V [3] in accordance with numerous neurobiological 
research data (for reviews, see: [1, 2]). However, differ-
ences in suicide neurobiology related to the main psychiat-
ric diagnosis seem to be accentuated despite of diagnoses-
overreaching phenomena specific for suicide [4, 5].

As revealed by neuropathological research on suicide, 
abnormalities in the serotonergic system may be structur-
ally restricted to a specific brain region, the dorsal raphe 
nucleus (DRN), which affects brain circuits (for a review 
see: [6]). DRN neurons provide the major serotonergic 
innervation to the prefrontal cortex (PFC) [7–9], which 
plays a pivotal role in behavioural regulation. Limbic 
regions of the PFC (i.e., the anterior cingulate cortex and 
the orbitofrontal cortex), in turn, may reciprocally regulate 

Abstract An involvement of the central serotonergic sys-
tem has constantly been reported in the pathogenesis of sui-
cide. The dorsal raphe nucleus (DRN) is the main source of 
serotonergic innervation of forebrain limbic structures dis-
turbed in suicidal behaviour, in which an abnormal micro-
glia reaction seems to play a role. In our present study, the 
density of microglia immunostained for the HLA-DR anti-
gen was evaluated in the DRN. These analyses were car-
ried out on paraffin-embedded brains from 24 suicidal and 
21 non-suicidal patients; among them, 27 depressed (15 
major depressive disorder and 12 bipolar disorder) and 18 
schizophrenia (9 residual and 9 paranoid) patients and 22 
matched controls without mental disorders. Only the non-
suicidal depressed subgroup revealed significantly lower 
microglial reaction, i.e., a decreased density of HLA-DR 
positive microglia versus both depressed suicide victims 
and controls. The effect was not related to antidepressant 
or antipsychotic medication, as the former correlated posi-
tively with microglial density in non-suicidal depressed 
patients, and the latter had no effect. Moreover, the com-
parison of these results with previously published data 
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DRN function through direct pyramidal input [10, 11] 
modulated by microglia in both healthy and disordered 
brain (for reviews, see: [12, 13]).

A number of postmortem studies revealed changes in 
the DRN of suicide victims [4, 5, 14–28]. Current research 
points to immune activation as a possible causal factor 
underlying the pathophysiology of suicidal behaviour (for 
reviews see: [12, 29]). The deteriorating impact of neu-
roinflammation on DRN neurons has been revealed in 
experimental conditions, which was paralleled by micro-
glia activation [30, 31]. Our recent research by the AgNOR 
(argyrophilic nucleolar organising region) silver staining 
has suggested a decreased ribosomal DNA (rDNA) tran-
scription in DRN neurons specific for suicide regardless 
of the main psychiatric diagnosis of affective disorders or 
schizophrenia [4]. However, neither postmortem nor neu-
roimaging studies of the DRN in mental disorders, among 
them suicidal behaviour, have yet addressed the issue of 
microglial reactivity in this structure.

Previously, we have hypothesized that microglia activa-
tion in forebrain regions (among them PFC regions) could 
constitute a diagnose-overreaching phenomenon specific 
for suicide [32], which has been also suggested by other 
studies [33]. Consequently, in this study of brains from the 
Magdeburg Brain Bank, we hypothesized microglia acti-
vation in the DRN in suicidal patients regardless of their 
established diagnosis of affective disorders or schizophre-
nia. Moreover, we hypothesized a deteriorating impact of 
microglia on the rDNA transcriptional activity in DRN 
neurons. We tested these hypotheses by the evaluation of 
microglia immunostained for the HLA-DR antigen, which 
is up-regulated in activated microglia compared to the con-
stitutive expression level observed in the resting human 
microglia ([34–36]; for a review, see: [37, 38]). Subse-
quently, we evaluated correlations between microglial den-
sity and AgNOR parameters obtained recently in the same 
cohort [4]. We aimed at both basic research on the neurobi-
ology of suicide and the verification of our hypothesis pre-
sented previously [32].

Methods

Human brain tissue

Brains of controls (n = 22) and both suicidal (n = 24) and 
non-suicidal patients (n = 21) with established diagnoses of 
a depressive episode in major depressive disorder (MDD) 
and bipolar disorder (BD) (n = 27) or paranoid and residual 
schizophrenia (n = 18) according to DSM-IV criteria, and 
no history of substance abuse, were obtained in accord-
ance with existing EU law regulations from the Magde-
burg Brain Bank (Germany). Most of investigated cases 
overlapped with those presented previously according to 

the differences in rDNA transcriptional activity in DRN 
neurons between schizophrenia and depression [39] and 
between suicidal and non-suicidal patients from both diag-
nostic groups [4]. The study has been approved by the local 
ethics committees of the University of Magdeburg and the 
Medical University of Gdańsk as performed in accordance 
with the ethical standards laid down in the Declaration of 
Helsinki of 1989. Demographic and clinical data are sum-
marized in Table 1.

During the last 90 days prior to death, a minority of 
patients was treated with psychotropic medication. A sub-
set of patients with affective disorder received antidepres-
sant (11 out of 27) and antipsychotic medication (10 out of 
27; 7 of them overlapped with those who received antide-
pressants). A subset of schizophrenia patients (7 out of 18) 
received antipsychotic medication. Affective disorders and 
schizophrenia patients who received antipsychotic medi-
cation were treated with typical antipsychotic drugs. The 
mean daily doses of psychotropic medication in the last 90 
days of life were established from the clinical records, tak-
ing into consideration the equivalents of psychotropic med-
ication present in the references [40–43].

Qualitative neuropathological changes suggestive of 
vascular, traumatic, inflammatory, neoplastic, and neuro-
degenerative processes were excluded by an experienced 
neuropathologist (C. M.). Sections from the prefrontal cor-
tex, the hippocampal complex, the subcortical nuclei, and 
the brainstem were evaluated in each of investigated cases. 
No case revealed ischemic foci accompanied by increased 
microglial reaction. Alterations suggestive of neurodegen-
erative disorders were excluded by immunostaining for 
beta-amyloid, hyperphosphorylated tau-protein, and ubiq-
uitin, as well as by Gallyas silver stain. The diagnosis of 
suicide was established by a forensic pathologist.

The tissue preparation was performed as previously 
described [4, 24, 39]. Briefly, brains were fixed in toto in 
8% phosphate-buffered formaldehyde for at least 2 months 
(pH = 7.0; temperature 15–20 °C). The brainstem was iso-
lated by a cut made perpendicularly to its longitudinal 
axis at the point of emergence of the oculomotor nerve. 
A second transverse cut was made at the caudal level of 
the medulla. After being embedded in paraffin, serial 
20-µm-thick transverse sections were cut along the entire 
rostrocaudal axis of the brainstem and mounted. Every 50th 
section was Nissl (cresyl violet) and myelin (Heidenhain-
Wölcke) stained. The rostral section of the DRN stained for 
microglia was adjacent to the one randomly selected from 
the first three Nissl-stained sections of the rostral DRN at 
the level of the trochlear nucleus. Accordingly, the caudal 
section of the DRN stained for microglia was selected at 
the level of the rostral locus coeruleus. Thus, the selection 
of sections for microglia staining was in accordance with 
the principle of systematic sampling. Consequently, one 
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section at the level of the trochlear nucleus containing the 
ventral, ventrolateral, dorsal, and interfascicular subnuclei, 
and one section at the level of the rostral locus coeruleus 
containing the caudal subnucleus of the DRN were used for 
the evaluation of AgNOR parameters in each of the inves-
tigated cases.

Microglia immunostaining

Formalin-fixed tissue sections were deparaffinized and 
treated with 1.5%  H2O2 for 10  min to block endogenous 
peroxidase activity, followed by blocking of unspecific 
binding sites with 10% normal goat serum for 60  min. 
Next, sections were incubated with anti-HLA-DR antibody 
for 24 h at 4 °C (DAKO Denmark, Clone TAL.1B5, 1:30). 
Primary antibodies were detected by the Avidin-Biotin-
Complex (ABC) method, using biotinylated goat antimouse 
IgG (Amersham England, RPN 1177, 1:100; 2  h at room 
temperature) in combination with streptavidin-biotin-per-
oxidase complex (Amersham England, RPN 1051, 1:100, 
1 h at room temperature). The chromogen 3,3΄-diaminoben-
zidine (DAB) and 0.5% ammonium nickel sulphate hexa-
hydrate were used to visualise the reaction product after a 
10 min. incubation at room temperature. The specificity of 

the HLA-DR antibody has been demonstrated previously 
[44]. This antibody reacts with the invariant C-terminal 
tail of HLA-DR [45]. Thus, immunoreactivity is inde-
pendent of a patient’s HLA-haplotype. Ramified microglia 
was defined as having thin, radially projecting processes. 
Ameboid microglia was defined as having densely stained, 
enlarged cell bodies, and few short processes, if any. Both 
monocytes and ameboid microglia may have a rounded 
to oval cell shape. The main criterion in distinguishing 
between these cells was their location in relation to ves-
sels. Cells visibly located inside vessels were classified as 
monocytes; cells that were clearly outside of vessels were 
evaluated as ameboid microglia [46]. Only microglia, i.e., 
cells located in the parenchyma were evaluated. Repre-
sentative patterns of microglia immunostaining are shown 
at Fig. 1b–d.

Quantification

The regions of interest within anatomical borders of 
each DRN subnucleus (i.e., the dorsal, ventrolateral, 
ventral, interfascicular, and caudal, identified accord-
ing to the description by Baker [47]) were delineated by 
200× magnification and delineated areas were measured 

Fig. 1  Microglial reaction in 
the dorsal raphe nucleus (DRN) 
is decreased in non-suicidal 
compared to suicidal depressed 
patients and controls as revealed 
by the immunostaining for 
HLA-DR antigen (exemplified 
by the immunostaining in the 
ventral subnucleus of the DRN); 
scale bars a 10 mm, b–d 20 µm
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automatically by computer image analysis system (cellS-
ens® Standard, Olympus, Japan). In each of these five 
areas, the total number of clearly immunostained micro-
glial cells (i.e., cells located in the parenchyma, which 
revealed higher staining intensity than background stain-
ing) was counted manually (per computer mouse clicks) 
diagnoses blind by the same magnification (R. B.). Cell 
densities in each of the DRN subnuclei were calculated 
by dividing the cell numbers by the measured areas 
(cells/mm2).

The sampled measures were averaged to derive single 
values for rostral and caudal subdivisions of the DRN and 
the entire DRN as a single anatomical structure in the 
investigated individual.

Data analysis

Statistical analyses were performed with the data analy-
sis software system STATISTICA version 10 (StatSoft®, 
Inc. 2011, http://www.statsoft.com). As normal distribu-
tion (i.e., significant results of the Kolmogorov–Smirnoff 
test) was not given for the data, non-parametric statistical 
procedures were used. First, a Kruskal–Wallis analysis of 
the variance of ranks (H test) was performed using the 
diagnostic group as an independent variable and micro-
glia density as dependent variable. Second, unadjusted 
two-way post-hoc comparisons with the Mann–Whit-
ney U test were carried out to detect between-group 
differences.

The χ2 test, the U test, and the H test were used to detect 
the possible differences between the study groups with 
respect to sex, age (at death and at disease onset), diagnosis 
(of affective disorders versus schizophrenia), season of the 
year (month of death in spring/summer versus autumn/win-
ter), postmortem delay, illness duration, medication dosage, 
brain weight, and fixation time (all statistical tests were 
two-tailed).

Spearman correlation coefficients were calculated to 
determine the impact of numerical variables which might 
confound the dependent variables, i.e., they were also cal-
culated to determine the influence of antidepressants and 
antipsychotics dosage on the microglia density in depressed 
patients and antipsychotics dosage on these parameters in 
schizophrenia patients. Moreover, they were calculated to 
determine the association between microglia density and 
AgNOR parameters (investigated previously, [4, 39]) in 
analysed groups.

In general, P values of <0.05 were accepted as statisti-
cally significant. When both the H test and triple post-hoc 
comparisons with the U test were considered in combina-
tion, the P values were corrected for multiple comparisons 
in line with the Bonferroni–Holm–Shaffer procedure.

Results

Qualitative analysis of the microglia morphology 
in the DRN

After immunostaining for HLA-DR antigen, the DRN 
microglia presented different morphological forms 
described previously in brains obtained from the Magde-
burg Brain Bank [32, 44] (Fig.  1b–d). However, the 
observed forms were not specifically related to any of the 
analysed groups or subgroups of patients.

Quantitative analysis of the microglia density 
in the DRN

No significant effects specific for both entire diagnostic 
groups (affective disorders, schizophrenia) and their sub-
groups (MDD, BD, or paranoid and residual schizophre-
nia, respectively) were found (non-significant H tests and 
U tests P values). Similarly, the statistical analysis revealed 
no significant differences in microglia density between all 
suicidal and non-suicidal patients from both diagnostic 
groups and controls by means of the analysis of rostral and 
caudal subregions of the DRN and the cumulative analysis 
of all DRN subnuclei. Only non-suicidal depressed patients 
revealed significantly decreased microglial reaction versus 
both suicidal depressed patients and controls in the cumula-
tive analysis of the DRN (Table 2).

The microglia density in the entire affective disorders 
group revealed significant correlation with the AgNOR 
number (r = 0.58, P = 0.002), which was an effect specific 
for non-suicidal patients (r = 0.62, P = 0.04). In the schizo-
phrenia group, this density was correlated with the AgNOR 
ratio (r = 0.51, P = 0.04), which was an effect specific for 
residual patients (r = 0.73, P = 0.04) (see Table  3). Thus, 
a positive correlation existed between microglia density 
and the AgNOR parameter in residual subgroup of schizo-
phrenia patients, which revealed a significant increase in 
this subgroup in our previous study [39]. No associations 
between microglia density and AgNOR parameters were 
found in controls.

Confounders

The median daily doses of both antipsychotics and anti-
depressants given in the last 90 days of life did not differ 
significantly between suicidal and non-suicidal patients. No 
significant correlations were found between antipsychotic 
medication and microglia density in the cumulative analy-
sis of DRN subnuclei in both cohorts. However, a strong 
positive correlation was found between antidepressants 
and microglia density in the non-suicide group (Table  1). 
Therefore, it was an effect which counteracted the observed 

http://www.statsoft.com
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differences in microglia density (Table 2) taking into con-
sideration that all non-suicidal patients treated with anti-
depressants (n = 5) were depressed patients (Table  1). 
Moreover, only non-suicidal depressed patients who were 
untreated with antidepressants (n = 6) revealed signifi-
cantly decreased microglial reaction versus controls (H test 
P value 0.042, corrected U test P value 0.039; for a com-
parison with the effect obtained for the entire non-suicide 
depressed subgroup see Table 2). Therefore, the presented 
decrease in the investigated parameter specific for non-sui-
cidal depressed patients was most probably not confounded 
by antidepressants.

Neither significant difference was found in numbers of 
affective disorders and schizophrenia patients between 
suicide and non-suicide groups (χ2 test P value 0.329) 
nor significant intra-group differences in the investigated 
parameter were found between affective disorders and 
schizophrenia patients in both suicide and non-suicide 
groups (non-significant U test P values).

Similarly, neither significant differences were found in 
numbers of males and females between compared groups 
(non-significant χ2 test P values, Table  1) nor significant 
differences in microglia density were found between males 
and females in suicide and non-suicide groups (non-signifi-
cant U test P values).

Other potentially confounding variables were neither 
significantly different between suicide and non-suicide 
groups nor associated with microglia density (see Table 1 
for the analysis of most important confounders).

Almost all non-suicidal patients and controls were sud-
den death cases (see Table 1). Only one case in the non-sui-
cidal group (Table 1, Case ID 27) and two cases in the con-
trol group (Table 1, Cases ID 49 and 60) deceased due to 
the toxic shock syndrome, which could be possibly related 
to microglial activation due to prolonged agony, hypoxia, 
and multiple organ dysfunction. However, none of these 
three cases revealed extreme values of microglia density in 
the DRN and the exclusion of them was irrelevant for the 
statistics. Therefore, it is unlikely that the cause of death 
(i.e., sudden death versus death with prolonged agony) con-
founded our results.

Discussion

Our study revealed a significantly decreased microglial 
reaction in the DRN in non-suicidal compared with sui-
cidal depressed patients from the affective disorders group 
and controls. The observed effect was neither confounded 
by other variables, among them postmortem interval, nor 

Table 2  Presentation of 
between-group differences 
regarding the evaluation 
of microglia density in the 
cumulative analysis of dorsal 
raphe nucleus subnuclei

S suicidal, NS non-suicidal patients (All from both diagnostic groups, D from affective disorders group, and 
Sz from schizophrenia group), C controls, q1 and q3 quartile 1 and 3, n number of cases, H test P H test P 
values, U test P U test P values corrected for multiple comparisons by Bonferroni–Holm–Shaffer proce-
dure (the level of α remains to be 0.05 after adjustment of P values), n.s. non-significant

Group Microglia density (cells/mm2)
Median (q1, q3; n)

H test P U test P

SAll 198 (107, 304; 24) SAll/NSAll/C SAll/NSAll SAll/C NSAll/C
SD 196 (126, 280; 16) n.s n.s n.s n.s
SS 237 (71, 405; 8)

SD/NSD/C SD/NSD SD/C NSD/C
NSAll 135 (85, 231; 21) 0.016 0.026 n.s 0.025
NSD 97 (78, 121; 11)
NSS 286 (135, 480; 10) SSz/NSSz/C SSz/NSSz SSz/C NSSz/C

n.s n.s n.s n.s
C 260 (141, 370; 22)

Table 3  AgNOR parameters of dorsal raphe nucleus neurons, which correlated significantly with microglia density in this nucleus in depressed 
or schizophrenia patients

r correlation coefficient, P P value of the Spearman’s correlation, D depressed patients, DNS non-suicidal, DS suicidal, Sz schizophrenia patients, 
Szres residual, Szpar paranoid

AgNOR parameter D DNS DS Sz Szres Szpar

AgNOR number, r/P 0.58/0.002 0.62/0.04 0.51/0.053 −0.010/0.70 −0.20/0.60 −0.04/0.94
AgNOR ratio, r/P 0.02/0.91 −0.34/0.31 −0.12/0.67 0.51/0.04 0.73/0.04 −0.18/0.70
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related to psychotropic medication, which partially coun-
teracted this effect. The significance was shown in the 
cumulative analysis of all DRN subnuclei, i.e., similarly as 
in our previous AgNOR studies [4, 5, 24, 39]. This phe-
nomenon could be related to the functional characteristics 
of DRN subregions, as their connections overlap in target 
structures [7–9] in spite of the accentuated distinctiveness 
[48, 49]. The overall microglia density in the DRN was 
higher compared to forebrain regions investigated previ-
ously [32], which corresponds with regional differences 
found in former studies of HLA-DR antigen expression and 
may be related to different neuroregulatory environments 
[50]. The observed morphological forms of microglia were 
not specifically related to any of the analysed groups or 
subgroups of patients, which corresponds with the previous 
studies of mental disorders where no significant diagnosis-
specific differences in microglia appearance were revealed 
[32, 33, 51, 52].

In our previous AgNOR study of similar cohorts, we 
have found that ribosomal DNA (rDNA) transcriptional 
activity in DRN neurons is decreased in depression com-
pared to schizophrenia [39]. Moreover, the relation between 
suicide and disturbed rDNA transcription was also differen-
tially accentuated in both diagnostic groups despite exist-
ing diagnosis-overreaching similarities [4]. Interestingly, in 
the current study, we have revealed an association between 
microglia density and AgNOR number in non-suicidal 
depressed, but not in non-suicidal schizophrenia patients. 
Therefore, both our previous AgNOR and present micro-
glia studies of the DRN suggest diagnosis-specific differ-
ences, which could be related to differentially disturbed dis-
tal afferent inputs (predominantly from the PFC) and local 
neuronal circuits (reviewed in: [39]).

The interpretation of our current results is not unequivo-
cal. Our previous studies suggested the decreased rDNA 
transcriptional activity in DRN neurons in depressed sui-
cidal compared to non-suicidal individuals [4, 24]. These 
results seem to be complementary to our current findings, 
as the increased microglia activity observed in the DRN of 
depressed suicides versus non-suicides may result in the 
decreased rDNA transcription in the former subgroup. As 
revealed by experimental studies, activated microglia may 
induce oxidative stress in target neurons (for a review, see: 
[53]), which, in turn, deteriorates their rDNA transcrip-
tional activity [54]. However, microglia may exert either 
devastating or restoring effect on neuronal function, which 
is related to the prevalence of damaging or supportive sub-
populations in activated microglia, respectively [13, 55, 
56].

Therefore, another interpretation of the increased micro-
glia activity in depressed suicides compared to non-sui-
cides should also be considered. The diminished rDNA 
transcriptional activity in DRN neurons [4, 5, 24] plays 

most probably a key role in their deteriorated plasticity in 
suicide victims [57]. Thus, the observed microglia increase 
in depressed suicides compared to non-suicides may reflect 
an attempt for the restoration of decreased neuronal plas-
ticity [56, 58]. Moreover, the increased microglial reaction 
in depressed suicides compared to non-suicides may consti-
tute rather a consequence than a cause of decreased activity 
of DRN neurons. Increased HLA-DR antigen presentation 
was found in microglia as a consequence of the attenuated 
activity of neighboring neurons in cellular cultures [59], 
which corresponds with numerous experimental data on 
the cross-talk between neurons and microglia (for reviews 
see: [60, 61]). Further research on cytokines produced by 
microglia in the DRN could possibly help to evaluate the 
exact pathophysiological relationships between microglia 
and neurons in suicidal behaviour. However, the increased 
levels of pro-inflammatory cytokines found in prefrontal 
regions and cerebrospinal fluid of suicide victims suggest 
rather the devastating neurodegenerative role of microglia 
activation in suicide (for reviews, see: [12, 29]).

Therefore, the decreased microglial reaction in the 
non-suicidal depressed subgroup might rather be inter-
preted as a suicide-preventive effect. Moreover, microglia 
density correlated positively with rDNA transcriptional 
activity in DRN neurons in this subgroup. Similar correla-
tion existed in the residual subgroup of our schizophrenia 
cohort. Recently, the neuroimaging study of predominantly 
euthymic BD patients has also suggested positive correla-
tion between microglial reaction and neuronal function 
[62]. As revealed in cellular cultures, microglia may pro-
duce neurotrophic factors ([63]; for a review, see: [55]), 
which, in turn, stimulate rDNA transcription in neurons 
([64]; for a review, see: [65]). The decreased microglial 
activity in brain structures was revealed in the neuroimag-
ing study of mild to moderately depressed patients [66]. 
The diminished microglial reaction was also found in the 
animal model of depression in the hippocampus paral-
leled by depressive-like behaviour, which was reversed 
after microglia stimulation by the systemic administration 
of bacterial endotoxin [67]. This regimen exerted an anti-
depressant effect in the melancholic subgroup of depressed 
patients [68], which was related to the microglia activa-
tion according to current neuroimaging data [69]. Taking 
together, these findings suggest the restorative function of 
microglia in non-suicidal depressed individuals in opposite 
to their neurodegenerative or disturbed restorative roles in 
depressed suicide victims from our cohort.

The strong positive correlation between antidepressant 
medication and HLA-DR positive microglia density found 
in non-suicidal patients supports the presented hypothesis 
on the protective role of microglial reaction in this sub-
group. Both animal models [67, 70, 71] and human data 
[71, 72] suggest the involvement of adequate microglial 
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activity in successful antidepressant treatment. Therefore, 
our results support the concept of personalised treatment of 
abnormal microglial reaction in depression, i.e., the treat-
ment aimed at either augmentation or attenuation of this 
reaction according to individually assessed immunological 
status of the patient [13, 67, 72].

Limitations

This study has certain limitations that have to be consid-
ered: (1) a relatively small number of cases have been 
analysed, especially for the evaluation of schizophrenia 
patients; therefore, results have to be confirmed in a larger 
sample. (2) A long-term influence of antidepressants and 
antipsychotics on the outcome of our study cannot be 
excluded, because no reliable data on this medication for 
a period beyond the 3  months prior to death were avail-
able. (3) Moreover, the relatively small number of treated 
patients prevents from a conclusive statement whether 
antipsychotics and antidepressants did, in fact, influence 
microglia density in the DRN.

Conclusion

In summary, we have revealed an abnormal microglial 
reaction in the DRN restricted to the affective disorders 
cohort. The results suggest region- and diagnosis-specific 
differences in this reaction compared to our previous study 
of forebrain regions in suicide [32]. The diminished activa-
tion of microglia in the DRN is a phenomenon specific for 
non-suicidal depressed patients, where also a positive asso-
ciation seems to exist between antidepressant medication, 
microglia activation, and rDNA transcription. The results 
suggest a possible suicide-preventive effect of microglial 
reaction restricted to this subgroup, whereas an opposite 
effect may exist in depressed suicidal patients. However, 
further research on cohorts containing more numerous sui-
cidal and non-suicidal cases with different psychiatric diag-
noses is warranted to appropriately evaluate this issue.
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