1,745 research outputs found

    Comment on "Thermal Lifshitz force between an atom and a conductor with a small density of carriers"

    Full text link
    We demonstrate that the generalization of the Lifshitz theory proposed by L. P. Pitaevskii arXiv:0801.0656 [Phys. Rev. Lett. v.101, 163202 (2008)] violates the Nernst heat theorem for many dielectric materials and is experimentally inconsistent.Comment: 2 pages, 1 figure; minor revisions are made in accordance with the text accepted for publication in Phys. Rev. Let

    Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy

    Get PDF
    We report on a small-angle x-ray-scattering (SAXS) and differential scanning calorimetry study of phase separation and crystallization in rapidly quenched amorphous Mg62Cu25Y10Li3 alloy samples. Differential scanning calorimetry demonstrates the occurrence of crystallization and grain growth upon isothermal annealing of these samples at 135 Ā°C. The SAXS studies show the presence of large inhomogeneities even in the rapidly quenched as-prepared Mg62Cu25Y10Li3 alloy that is attributed to phase separation in the undercooled liquid during the cooling process. After isothermal annealing at 135 Ā°C for longer than 30 min the samples exhibit a strong SAXS intensity that monotonically increases with increasing annealing time. During heat treatment, crystallization and growth of a nanocrystalline bcc-Mg7Li3 phase occurs in the Y-poor and MgLi-rich domains. The initially rough boundaries of the nanocrystals become sharper with increasing annealing time. Anomalous small-angle x-ray-scattering investigations near the Cu K edge indicate that while Cu is distributed homogeneously in the as-prepared sample, a Cu composition gradient develops between the matrix and the bcc-Mg7Li3 nanocrystals in the annealed sample

    Oxidation and crystallization of an amorphous Zr60Al15Ni25 alloy

    Get PDF
    The amorphous ternary metallic alloy Zr60Al15Ni25 was oxidized in dry oxygen in the temperature range 310 Ā±C to 410 Ā±C. Rutherford backscattering (RBS) and cross-sectional transmission electron microscopy (TEM) studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel was depleted in the oxide and enriched in the amorphous alloy near the interface. The oxide layer thickness grows parabolically with annealing duration, with a transport constant of 2.8 x 10^-5 m^2/s x exp(-1.7 eV/kT). The oxidation rate may be controlled by the diffusion of Ni in the amorphous alloy. At later stages of the oxidation process, precipitates of nanocrystalline ZrO2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy. An explanation involving preferential oxidation is proposed

    Carbon Dioxide Insufflation in Routine Colonoscopy Is Safe and More Comfortable: Results of a Randomized Controlled Double-Blinded Trial

    Get PDF
    Many patients experience pain and discomfort after colonoscopy. Carbon dioxide (CO2) can reduce periprocedural pain although air insufflation remained the standard procedure. The objective of this double-blinded, randomized controlled trial was to evaluate whether CO2 insufflation does decrease pain and bloating during and after colonoscopy compared to room air. Methods. 219 consecutive patients undergoing colonoscopy were randomized to either CO2 or air insufflation. Propofol was used in all patients for sedation. Transcutaneous CO2 was continuously measured with a capnograph as a safety parameter. Pain, bloating, and overall satisfaction were assessed at regular intervals before and after the procedure. Results(data are mean Ā±SD). 110 patients were randomized to CO2 and 109 to room air. The baseline characteristics were similar in both groups. The mean propofol dose was not different between the treatments, as were the time to reach the ileum and the withdrawal time. pCO2 at the end of the procedure was 35.2 Ā± 4.3ā€‰mmHg (CO2 group) versus 35.6 Ā± 6.0ā€‰mmHg in the room air group (P > .05). No relevant complication occurred in either group. There was significantly less bloating for the CO2 group during the postprocedural recovery period (P < .001) and over the 24-hour period (P < .001). Also, patients with CO2 insufflation experienced significantly less pain (P = .014). Finally, a higher overall satisfaction (P = .04 ) was found in the CO2 group. Conclusions. This trial provides compelling evidence that CO2 insufflation significantly reduces bloating and pain after routine colonoscopy in propofol-sedated patients. The procedure is safe with no significant differences in CO2 between the two groups

    Small atom diffusion and breakdown of the Stokesā€“Einstein relation in the supercooled liquid state of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 alloy

    Get PDF
    Be diffusivity data in the bulk metallic glass forming alloy Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530 and 710 K, extending 85 K into the supercooled liquid state of the alloy. At the glass transition temperature Tg, a change in temperature dependence of the data is observed, and above Tg the diffusivity increases more quickly with temperature than below. The data in the supercooled liquid can be described by a modified Arrhenius expression based on a diffusion mechanism suggested earlier. The comparison with viscosity data in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5 reveals a breakdown of the Stokesā€“Einstein relation, indicating a cooperative diffusion mechanism in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5

    Comment on ``Precision measurement of the Casimir-Lifshitz force in a fluid''

    Full text link
    Recently J.N. Munday and F. Capasso [Phys. Rev. A {\bf 75}, 060102(R) (2007); arXiv:0705.3793] claimed that they have performed a precision measurement of the Casimir force between a sphere and a plate coated with Au, both immersed in ethanol. The measurement results were claimed to be consistent with the Lifshitz theory. We demonstrate that the calculation of the Casimir force between the smooth bodies following the authors prescription has a discrepancy up to 25% with respect to authors result. We show also that the attractive electrostatic force only due to the surface potential differences was underestimated by a factor of 590 and the charge double layer interaction was not taken into account. All this leads to the conclusion that the results of this experiment are in fact uncertain.Comment: 5 pages, 1 figure, submitted to Physical Review A; corrections are made in accordance to referee's suggestion

    Fermion-Boson Interactions and Quantum Algebras

    Get PDF
    Quantum Algebras (q-algebras) are used to describe interactions between fermions and bosons. Particularly, the concept of a su_q(2) dynamical symmetry is invoked in order to reproduce the ground state properties of systems of fermions and bosons interacting via schematic forces. The structure of the proposed su_q(2) Hamiltonians, and the meaning of the corresponding deformation parameters, are discussed.Comment: 20 pages, 10 figures. Physical Review C (in press

    Ionic liquids: not always innocent solvents for cellulose

    No full text

    Retinoic Acid-Binding Protein in Human Breast Cancer and Dysplasia

    Get PDF
    Seventy-five specimens of human breast tissue were checked for the presence of cellular retinoic acid-binding protein (cRABP). Fifty-two percent of the primary carcinomas and 43% of the dysplastic breast lesions (stage MIl) contained detectable amounts of cRABP, whereas no cRABP was found in normal tissue. Sucrose gradient centrifugation and electrophoresis on agarose were used for analysis of the presence of cRABP. The cRABP of human origin (normal uterus and neoplastic mammary tissue) differed in its mobility in agarose electrophoresis from that of rat testis cRA
    • ā€¦
    corecore