72 research outputs found

    Insights into the Regulatory Characteristics of the Mycobacterial Dephosphocoenzyme A Kinase: Implications for the Universal CoA Biosynthesis Pathway

    Get PDF
    Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA)

    A Global Characterization and Identification of Multifunctional Enzymes

    Get PDF
    Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What’s more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm

    In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein.

    No full text
    We constructed several deletion mutants of Escherichia coli single-stranded DNA binding protein (EcoSSB) lacking different parts of the C-terminal region. This region of EcoSSB is composed of two parts: a glycine and proline-rich sequence of approximately 60 amino acids followed by an acidic region of the last 10 amino acids which is highly conserved among the bacterial SSB proteins. The single-stranded DNA binding protein of human mitochondria (HsmtSSB) lacks a region homologous to the C-terminal third of EcoSSB. Therefore, we also investigated a chimeric protein consisting of the complete sequence of the human mitochondrial single-stranded DNA binding protein (HsmtSSB) and the C-terminal third of EcoSSB. Fluorescence titrations and DNA-melting curves showed that the C-terminal third of EcoSSB is not essential for DNA-binding in vitro. The affinity for single-stranded DNA and RNA is even increased by the removal of the last 10 amino acids. Consequently, the nucleic acid binding affinity of HsmtSSB is reduced by the addition of the C-terminus of EcoSSB. All mutant proteins lacking the last 10 amino acids are unable to substitute wild-type EcoSSB in vivo. Thus, while the nucleic acid binding properties do not depend on an intact C-terminus, this region is essential for in vivo function. Although the DNA binding properties of HsmtSSB and EcoSSB are quite similar, HsmtSSB does not function in E.coli. This failure cannot be overcome by fusing the C-terminal third of EcoSSB to HsmtSSB. Thus differences in the N-terminal parts of both proteins must be responsible for this incompatibility. None of the mutants was defective in tetramerization. However, mixed tetramers could only be formed by proteins containing the same N-terminal part. This reflects structural differences between the N-terminal parts of HsmtSSB and EcoSSB. These results indicate that the region of the last 10 amino acids, which is highly conserved among bacterial SSB proteins, is involved in essential protein-protein interactions in the E.coli cell

    Crystal structure of aspartate decarboxylase at 2.2 A resolution provides evidence for an ester in protein self-processing.

    No full text
    The structure of L-aspartate-alpha-decarboxylase from E. coli has been determined at 2.2 A resolution. The enzyme is a tetramer with pseudofour-fold rotational symmetry. The subunits are six-stranded beta-barrels capped by small alpha-helices at each end. The active sites are located between adjacent subunits. The electron density provides evidence for catalytic pyruvoyl groups at three active sites and an ester at the fourth. The ester is an intermediate in the autocatalytic self-processing leading to formation of the pyruvoyl group. This unprecedented structure provides novel insights into the general phenomenon of protein processing
    corecore