252 research outputs found

    From extended phase space dynamics to fluid theory

    Full text link
    We derive a fluid theory for spin-1/2 particles starting from an extended kinetic model based on a spin-projected density matrix formalism. The evolution equation for the spin density is found to contain a pressure-like term. We give an example where this term is important by looking at a linear mode previously found in a spin kinetic model.Comment: 4 page

    Spin and magnetization effects in plasmas

    Full text link
    We give a short review of a number of different models for treating magnetization effects in plasmas. In particular, the transition between kinetic models and fluid models is discussed. We also give examples of applications of such theories. Some future aspects are discussed.Comment: 18 pages, 1 figure. To appear in Plasma Physics and Controlled Fusion, Special Issue for the 37th ICPP, Santiago, Chil

    Structural Relaxation and Mode Coupling in a Simple Liquid: Depolarized Light Scattering in Benzene

    Full text link
    We have measured depolarized light scattering in liquid benzene over the whole accessible temperature range and over four decades in frequency. Between 40 and 180 GHz we find a susceptibility peak due to structural relaxation. This peak shows stretching and time-temperature scaling as known from α\alpha relaxation in glass-forming materials. A simple mode-coupling model provides consistent fits of the entire data set. We conclude that structural relaxation in simple liquids and α\alpha relaxation in glass-forming materials are physically the same. A deeper understanding of simple liquids is reached by applying concepts that were originally developed in the context of glass-transition research.Comment: submitted to New J. Phy

    Dielectric and thermal relaxation in the energy landscape

    Full text link
    We derive an energy landscape interpretation of dielectric relaxation times in undercooled liquids, comparing it to the traditional Debye and Gemant-DiMarzio-Bishop pictures. The interaction between different local structural rearrangements in the energy landscape explains qualitatively the recently observed splitting of the flow process into an initial and a final stage. The initial mechanical relaxation stage is attributed to hopping processes, the final thermal or structural relaxation stage to the decay of the local double-well potentials. The energy landscape concept provides an explanation for the equality of thermal and dielectric relaxation times. The equality itself is once more demonstrated on the basis of literature data for salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems, Molveno 2006, submitted to Philosophical Magazin

    Spin kinetic theory - quantum kinetic theory in extended phase space

    Full text link
    The concept of phase space distribution functions and their evolution is used in the case of en enlarged phase space. In particular, we include the intrinsic spin of particles and present a quantum kinetic evolution equation for a scalar quasi-distribution function. In contrast to the proper Wigner transformation technique, for which we expect the corresponding quasi-distribution function to be a complex matrix, we introduce a spin projection operator for the density matrix in order to obtain the aforementioned scalar quasi-distribution function. There is a close correspondence between this projection operator and the Husimi (or Q) function used extensively in quantum optics. Such a function is based on a Gaussian smearing of a Wigner function, giving a positive definite distribution function. Thus, our approach gives a Wigner-Husimi quasi-distribution function in extended phase space, for which the reduced distribution function on the Bloch sphere is strictly positive. We also discuss the gauge issue and the fluid moment hierarchy based on such a quantum kinetic theory.Comment: 10 pages, to appear in Transport Theory and Statistical Physics, proceedings of Vlasovia III, 200

    The nature of the short wavelength excitations in vitreous silica: X-Rays Brillouin scattering study

    Full text link
    The dynamical structure factor (S(Q,E)) of vitreous silica has been measured by Inelastic X-ray Scattering varying the exchanged wavevector (Q) at fixed exchanged energy (E) - an experimental procedure that, contrary to the usual one at constant Q, provides spectra with much better identified inelastic features. This allows the first direct evidence of Brillouin peaks in the S(Q,E) of SiO_2 at energies above the Boson Peak (BP) energy, a finding that excludes the possibility that the BP marks the transition from propagating to localised dynamics in glasses.Comment: 4 pages, 3 Postscript figures. To appear in Physical Review Letter

    Melting of 2D liquid crystal colloidal structure

    Get PDF
    Using video microscopy, we investigated melting of a two-dimensional colloidal system, formed by glycerol droplets at the free surface of a nematic liquid crystalline layer. Analyzing different structure correlation functions, we conclude that melting occurs through an intermediate hexatic phase, as predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young(KTHNY) theory. However, the temperature range of the intermediate phase is rather narrow, <1°C, and the characteristic critical power law decays of the correlation functions are not fully developed. We conclude that the melting of our 2D systems qualitatively occurs according to KTHNY, although quantitative details of the transition scenario may partly depend on the details of interparticle interaction

    Scalar quantum kinetic theory for spin-1/2 particles: mean field theory

    Full text link
    Starting from the Pauli Hamiltonian operator, we derive a scalar quantum kinetic equations for spin-1/2 systems. Here the regular Wigner two-state matrix is replaced by a scalar distribution function in extended phase space. Apart from being a formulation of principal interest, such scalar quantum kinetic equation makes the comparison to classical kinetic theory straightforward, and lends itself naturally to currently available numerical Vlasov and Boltzmann schemes. Moreover, while the quasi-distribution is a Wigner function in regular phase space, it is given by a Q-function in spin space. As such, nonlinear and dynamical quantum plasma problems are readily handled. Moreover, the issue of gauge invariance is treated. Applications (e.g. ultra-dense laser compressed targets and their diagnostics), possible extensions, and future improvements of the presented quantum statistical model are discussed.Comment: 21 pages, 2 figure

    Dielectric and conductivity relaxation in mixtures of glycerol with LiCl

    Full text link
    We report a thorough dielectric characterization of the alpha relaxation of glass forming glycerol with varying additions of LiCl. Nine salt concentrations from 0.1 - 20 mol% are investigated in a frequency range of 20 Hz - 3 GHz and analyzed in the dielectric loss and modulus representation. Information on the dc conductivity, the dielectric relaxation time (from the loss) and the conductivity relaxation time (from the modulus) is provided. Overall, with increasing ion concentration, a transition from reorientationally to translationally dominated behavior is observed and the translational ion dynamics and the dipolar reorientational dynamics become successively coupled. This gives rise to the prospect that by adding ions to dipolar glass formers, dielectric spectroscopy may directly couple to the translational degrees of freedom determining the glass transition, even in frequency regimes where usually strong decoupling is observed.Comment: 8 pages, 7 figure

    Flow-volume loops derived from three-dimensional echocardiography: a novel approach to the assessment of left ventricular hemodynamics

    Get PDF
    BACKGROUND: This study explores the feasibility of non-invasive evaluation of left ventricular (LV) flow-volume dynamics using 3-dimensional (3D) echocardiography, and the capacity of such an approach to identify altered LV hemodynamic states caused by valvular abnormalities. METHODS: Thirty-one patients with moderate-severe aortic (AS) and mitral (MS) stenoses (21 and 10 patients, respectively) and 10 healthy volunteers underwent 3D echocardiography with full volume acquisition using Philips Sonos 7500 equipment. The digital 3D data were post- processed using TomTec software. LV flow-volume loops were subsequently constructed for each subject by plotting instantaneous LV volume data sampled throughout the cardiac cycle vs. their first derivative representing LV flow. After correction for body surface area, an average flow-volume loop was calculated for each subject group. RESULTS: Flow-volume loops were obtainable in all subjects, except 3 patients with AS. The flow-volume diagrams displayed clear differences in the form and position of the loops between normal individuals and the respective patient groups. In patients with AS, an "obstructive" pattern was observed, with lower flow values during early systole and larger end-systolic volume. On the other hand, patients with MS displayed a "restrictive" flow-volume pattern, with reduced diastolic filling and smaller end-diastolic volume. CONCLUSION: Non-invasive evaluation of LV flow-volume dynamics using 3D-echocardiographic data is technically possible and the approach has a capacity to identify certain specific types of alteration of LV flow-volume pattern caused by valvular abnormalities, thus reflecting underlying hemodynamic states specific for these abnormalities
    corecore