688 research outputs found

    PD-0283: 4D dose accumulation for dose painting by numbers for lung cancer

    Get PDF
    In conventional radiotherapy of locally advanced lung cancer (LALC) doses levels are homogeneously delivered to the entire PTV, whereat dose escalation is restricted by normal tissue toxicity. Several studies have shown the geometrical correlation between high FDG uptake in a PET scan and tumour recurrence. This is the rationale for FDG-based local dose escalation, e.g. by dose prescription on the voxel values of a PET scan – dose painting by numbers (DPBN). The aim of this study is to investigate the robustness of the DPBN plans against tumour motio

    Cassidina extenda, a new species of isopod from Bombay

    Get PDF
    This article does not have an abstract

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile

    Mechanical and Microstructural Analysis of Carbon nanotube Composites Pretreated at Different Temperatures

    Get PDF
    Abstract Carbon nanotube (CNT) based epoxy composites have been fabricated and were subjected to different temperature conditions. Flexural moduli and hardness of all samples were determined. The resulting composites demonstrated enhanced physical properties due to the addition of high strength CNTs. Effect of temperature on mechanical properties of composites has been examined microscopically by SEM through fracture surface. Results confirmed that nanocomposites pretreated with hot water are found to be tough and those treated in liquid nitrogen are brittle. Uniform distribution of CNTs in the matrix and bridging of crack initiation by CNTs contribute to maintain structural integrity under variable temperature

    Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy

    Get PDF
    Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (1E-13 m/rtHz) AFM to investigate the mechanical behavior of a SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT and its mechanical behavior is provided

    Dynamical aspects of the fuzzy CP2^{2} in the large NN reduced model with a cubic term

    Full text link
    ``Fuzzy CP^2'', which is a four-dimensional fuzzy manifold extension of the well-known fuzzy analogous to the fuzzy 2-sphere (S^2), appears as a classical solution in the dimensionally reduced 8d Yang-Mills model with a cubic term involving the structure constant of the SU(3) Lie algebra. Although the fuzzy S^2, which is also a classical solution of the same model, has actually smaller free energy than the fuzzy CP^2, Monte Carlo simulation shows that the fuzzy CP^2 is stable even nonperturbatively due to the suppression of tunneling effects at large N as far as the coefficient of the cubic term (α\alpha) is sufficiently large. As \alpha is decreased, both the fuzzy CP2^2 and the fuzzy S^2 collapse to a solid ball and the system is essentially described by the pure Yang-Mills model (\alpha = 0). The corresponding transitions are of first order and the critical points can be understood analytically. The gauge group generated dynamically above the critical point turns out to be of rank one for both CP^2 and S^2 cases. Above the critical point, we also perform perturbative calculations for various quantities to all orders, taking advantage of the one-loop saturation of the effective action in the large-N limit. By extrapolating our Monte Carlo results to N=\infty, we find excellent agreement with the all order results.Comment: 27 pages, 7 figures, (v2) References added (v3) all order analyses added, some typos correcte

    Spike-Train Responses of a Pair of Hodgkin-Huxley Neurons with Time-Delayed Couplings

    Full text link
    Model calculations have been performed on the spike-train response of a pair of Hodgkin-Huxley (HH) neurons coupled by recurrent excitatory-excitatory couplings with time delay. The coupled, excitable HH neurons are assumed to receive the two kinds of spike-train inputs: the transient input consisting of MM impulses for the finite duration (MM: integer) and the sequential input with the constant interspike interval (ISI). The distribution of the output ISI ToT_{\rm o} shows a rich of variety depending on the coupling strength and the time delay. The comparison is made between the dependence of the output ISI for the transient inputs and that for the sequential inputs.Comment: 19 pages, 4 figure

    Nonperturbative studies of fuzzy spheres in a matrix model with the Chern-Simons term

    Full text link
    Fuzzy spheres appear as classical solutions in a matrix model obtained via dimensional reduction of 3-dimensional Yang-Mills theory with the Chern-Simons term. Well-defined perturbative expansion around these solutions can be formulated even for finite matrix size, and in the case of kk coincident fuzzy spheres it gives rise to a regularized U(kk) gauge theory on a noncommutative geometry. Here we study the matrix model nonperturbatively by Monte Carlo simulation. The system undergoes a first order phase transition as we change the coefficient (α\alpha) of the Chern-Simons term. In the small α\alpha phase, the large NN properties of the system are qualitatively the same as in the pure Yang-Mills model (α=0\alpha =0), whereas in the large α\alpha phase a single fuzzy sphere emerges dynamically. Various `multi fuzzy spheres' are observed as meta-stable states, and we argue in particular that the kk coincident fuzzy spheres cannot be realized as the true vacuum in this model even in the large NN limit. We also perform one-loop calculations of various observables for arbitrary kk including k=1k=1. Comparison with our Monte Carlo data suggests that higher order corrections are suppressed in the large NN limit.Comment: Latex 37 pages, 13 figures, discussion on instabilities refined, references added, typo corrected, the final version to appear in JHE

    Participatory evaluation guides the development and selection of farmers’ preferred rice varieties for salt- and flood-affected coastal deltas of South and Southeast Asia

    Get PDF
    Rice is the staple food and provides livelihood for smallholder farmers in the coastal delta regions of South and Southeast Asia. However, its productivity is often low because of several abiotic stresses including high soil salinity and waterlogging during the wet (monsoon) season and high soil and water salinity during the dry season. Development and dissemination of suitable rice varieties tolerant of these multiple stresses encountered in coastal zones are of prime importance for increasing and stabilizing rice productivity, however adoption of new varieties has been slow in this region. Here we implemented participatory varietal selection (PVS) processes to identify and understand smallholder farmers’ criteria for selection and adoption of new rice varieties in coastal zones. New breeding lines together with released rice varieties were evaluated in on-station and on-farm trials (researcher-managed) during the wet and dry seasons of 2008–2014 in the Indian Sundarbans region. Significant correlations between preferences of male and female farmers in most trials indicated that both groups have similar criteria for selection of rice varieties. However, farmers’ preference criteria were different from researchers’ criteria. Grain yield was important, but not the sole reason for variety selection by farmers. Several other factors also governed preferences and were strikingly different when compared across wet and dry seasons. For the wet season, farmers preferred tall (140–170cm), long duration (160–170 d), lodging resistant and high yielding rice varieties because these traits are required in lowlands where water stagnates in the field for about four months (July to October). For the dry season, farmers’ preferences were for high yielding, salt tolerant, early maturing (115–130 d) varieties with long slender grains and good quality for better market value. Pest and disease resistance was important in both seasons but did not rank high. When farmers ranked the two most preferred varieties, the ranking order was sometimes variable between locations and years, but when the top four varieties that consistently ranked high were considered, the variability was low. This indicates that at least 3–4 of the best-performing entries should be considered in succeeding multi-location and multi-year trials, thereby increasing the chances that the most stable varieties are selected. These findings will help improve breeding programs by providing information on critical traits. Selected varieties through PVS are also more likely to be adopted by farmers and will ensure higher and more stable productivity in the salt- and flood-affected coastal deltas of South and Southeast Asia

    Prognostic Factors Associated with Survival in Patients with Primary Duodenal Adenocarcinoma

    Get PDF
    Background/Aims: The prognostic factors in primary duodenal adenocarcinoma remain controversial. This study evaluated the prognostic factors associated with survival in patients with primary duodenal adenocarcinoma. Methods: From March 1996 to June 2008, the medical records of 30 patients with a final diagnosis of primary duodenal epithelial malignancy seen at two referral centers were reviewed retrospectively. The prognostic factors for survival were evaluated 6 months and 1, 2, and 5 years after the diagnosis. Results: The median survival was 5.7 months. The survival rate was 46.7 % (14/30), 16.7 % (5/30), 10 % (3/30), and 6.7 % (2/30) at 6 months and 1, 2, and 5 years, respectively. Multivariate analysis showed that cancer-direct-ed treatment, including curative surgery or chemotherapy, was a common independent risk factor at all follow-up times. Total bilirubin, cytology, and TNM stage were independent risk factors for survival at 1, 2, and 5 years. The white blood cell count was an independent risk factor at 1 year only. The actuarial probability of survival in patients undergoing cancer-directed treatment was significantly higher than in those without treatment at 6 months (71.4 vs. 25.0%, p < 0.01), 1 year (28.6 vs. 6.3%, p < 0.01), 2 years (21.4 vs. 0%, p < 0.01), and 5 years (14.3 vs. 0%, p < 0.01). Conclusions: The prognostic factors in patients with primary duodenal adenocarcinoma were total bilirubin, TNM stage, cytology, and cancer-directed treatments until the 5-year follow-up. Especially, cancer-directed treat-ments improved patient survival. (Korean J Intern Med 2011;26:34-40
    • …
    corecore