``Fuzzy CP^2'', which is a four-dimensional fuzzy manifold extension of the
well-known fuzzy analogous to the fuzzy 2-sphere (S^2), appears as a classical
solution in the dimensionally reduced 8d Yang-Mills model with a cubic term
involving the structure constant of the SU(3) Lie algebra. Although the fuzzy
S^2, which is also a classical solution of the same model, has actually smaller
free energy than the fuzzy CP^2, Monte Carlo simulation shows that the fuzzy
CP^2 is stable even nonperturbatively due to the suppression of tunneling
effects at large N as far as the coefficient of the cubic term (α) is
sufficiently large. As \alpha is decreased, both the fuzzy CP2 and the fuzzy
S^2 collapse to a solid ball and the system is essentially described by the
pure Yang-Mills model (\alpha = 0). The corresponding transitions are of first
order and the critical points can be understood analytically. The gauge group
generated dynamically above the critical point turns out to be of rank one for
both CP^2 and S^2 cases. Above the critical point, we also perform perturbative
calculations for various quantities to all orders, taking advantage of the
one-loop saturation of the effective action in the large-N limit. By
extrapolating our Monte Carlo results to N=\infty, we find excellent agreement
with the all order results.Comment: 27 pages, 7 figures, (v2) References added (v3) all order analyses
added, some typos correcte