45 research outputs found

    Bile Acids Specifically Increase Hepatitis C Virus RNA-Replication

    Get PDF
    <div><h3>Background</h3><p>Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on individual steps of virus replication.</p> <h3>Methods</h3><p>We measured replication of subgenomic genotype (GT) 1b and 2a RNAs as well as full-length GT2a genomes in the presence of BAs using quantitative RT-PCR and luciferase assays. Cell entry was determined using HCV pseudoparticles (HCVpp). Virus assembly and release were quantified using a core-specific ELISA. Replicon chimeras were employed to characterize genotype-specific modulation of HCV by BAs. Lunet CD81/GFP-NLS-MAVS cells were used to determine infection of Con1 particles.</p> <h3>Results</h3><p>BAs increased RNA-replication of GT1b replicons up to 10-fold but had no effect on subgenomic GT2a replicons both in Huh-7 and HuH6 cells. They did not increase viral RNA translation, virus assembly and release or cell entry. Lowering replication efficiency of GT2a replicons rendered them susceptible to stimulation by BAs. Moreover, replication of full length GT1b with or without replication enhancing mutations and GT2a genomes were also stimulated by BAs.</p> <h3>Conclusions</h3><p>Bile acids specifically enhance RNA-replication. This is not limited to GT1, but also holds true for GT2a full length genomes and subgenomic replicons with low replication capacity. The increase of HCV replication by BAs may influence the efficacy of antiviral treatment in vivo and may improve replication of primary HCV genomes in cell culture.</p> </div

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Presecretory oxidation, aggregation, and autophagic destruction of apoprotein-B: A pathway for late-stage quality control

    No full text
    Hepatic secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins, is regulated through posttranslational degradation. We reported a degradation pathway, post-ER pre secretory proteolysis (PERPP), that is increased by reactive oxygen species (ROS) generated within hepatocytes from dietary polyunsaturated fatty acids (PUFA). We now report the molecular processes by which PUFA-derived ROS regulate PERPP of apoB. ApoB exits the ER; undergoes limited oxidant-dependent aggregation; and then, upon exit from the Golgi, becomes extensively oxidized and converted into large aggregates. The aggregates slowly degrade by an autophagic process. None of the oxidized, aggregated material leaves cells, thereby preventing export of apoB-lipoproteins containing potentially toxic lipid peroxides. In summary, apoB secretory control via PERPP/autophagosomes is likely a key component of normal and pathologic regulation of plasma apoB levels, as well as a means for remarkably late-stage quality control of a secreted protein
    corecore