12 research outputs found

    Local microcircuitry of parasubiculum shows distinct and common features of excitatory and inhibitory connectivity

    Get PDF
    The parasubiculum is located within the parahippocampal region, where it is thought to be involved in the processing of spatial navigational information. It contains a number of functionally specialised neuron types including grid cells, head direction cells and border cells, and provides input into layer 2 of the medial entorhinal cortex where grid cells are abundantly located. The local circuitry within the parasubiculum remains so far undefined but may provide clues as to the emergence of spatially tuned firing properties of neurons in this region. We used simultaneous patch-clamp recordings to determine the connectivity rates between the three major groups of neurons found in the parasubiculum. We find high rates of interconnectivity between the pyramidal class and interneurons, as well as features of pyramid to pyramid interactions indicative of a non-random network. The microcircuit that we uncover shares both similarities and divergences to those from other parahippocampal regions also involved in spatial navigation

    Local microcircuitry of PaS shows distinct and common features of excitatory and inhibitory connectivity

    Get PDF
    The parasubiculum (PaS) is located within the parahippocampal region, where it is thought to be involved in the processing of spatial navigational information. It contains a number of functionally specialized neuron types including grid cells, head direction cells, and border cells; and provides input into layer 2 of the medial entorhinal cortex where grid cells are abundantly located. The local circuitry within the PaS remains so far undefined but may provide clues as to the emergence of spatially tuned firing properties of neurons in this region. We used simultaneous patch-clamp recordings to determine the connectivity rates between the 3 major groups of neurons found in the PaS. We find high rates of interconnectivity between the pyramidal class and interneurons, as well as features of pyramid-to-pyramid interactions indicative of a nonrandom network. The microcircuit that we uncover shares both similarities and divergences to those from other parahippocampal regions also involved in spatial navigation

    Hippocampal GABAergic interneurons and memory

    Get PDF
    One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus

    Interneuron switching on and off across memory rhythms

    No full text
    In this issue of Neuron, Szabo et al. uncover a unique subtype of interneurons that is highly active during ripples but largely silent during theta oscillations. The study provides exciting new insights into the regulation and propagation of ripples in CA1 and beyond

    GABAergic interneurons with nonlinear dendrites: from neuronal computations to memory engrams

    No full text
    GABAergic interneurons are a highly diverse class of neurons in the mammalian brain with a critical role in orchestrating multiple cognitive functions and maintaining the balance of excitation/ inhibition across neuronal circuitries. In this perspective, we discuss recent findings regarding the ability of some interneuron subtypes to integrate incoming inputs in nonlinear ways within their dendritic branches. These recently discovered features may endow the specific interneurons with advanced computing capabilities, whose breadth and functional contributions remain an open question. Along these lines, we discuss theoretical and experimental evidence regarding the potential role of nonlinear interneuron dendrites in advancing single neuron computations and contributing to memory formation

    Gamma oscillation plasticity is mediated via parvalbumin interneurons

    Get PDF
    Understanding the plasticity of neuronal networks is an emerging field of (patho-) physiological research, yet the underlying cellular mechanisms remain poorly understood. Gamma oscillations (30 to 80 hertz), a biomarker of cognitive performance, require and potentiate glutamatergic transmission onto parvalbumin-positive interneurons (PVIs), suggesting an interface for cell-to-network plasticity. In ex vivo local field potential recordings, we demonstrate long-term potentiation of hippocampal gamma power. Gamma potentiation obeys established rules of PVI plasticity, requiring calcium-permeable AMPA receptors (CP-AMPARs) and metabotropic glutamate receptors (mGluRs). A microcircuit computational model of CA3 gamma oscillations predicts CP-AMPAR plasticity onto PVIs critically outperforms pyramidal cell plasticity in increasing gamma power and completely accounts for gamma potentiation. We reaffirm this ex vivo in three PVI-targeting animal models, demonstrating that gamma potentiation requires PVI-specific signaling via a Gq/PKC pathway comprising mGluR5 and a Gi-sensitive, PKA-dependent pathway. Gamma activity-dependent, metabotropically mediated CP-AMPAR plasticity on PVIs may serve as a guiding principle in understanding network plasticity in health and disease

    Recommendations for empowering early career researchers to improve research culture and practice

    No full text
    Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian.Clinical epidemiolog

    Recommendations for empowering early career researchers to improve research culture and practice

    No full text
    Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian

    Recommendations for empowering early career researchers to improve research culture and practice

    No full text
    Early career researchers (ECRs) are important stakeholders leading efforts to catalyze systemic change in research culture and practice. Here, we summarize the outputs from a virtual unconventional conference (unconference), which brought together 54 invited experts from 20 countries with extensive experience in ECR initiatives designed to improve the culture and practice of science. Together, we drafted 2 sets of recommendations for (1) ECRs directly involved in initiatives or activities to change research culture and practice; and (2) stakeholders who wish to support ECRs in these efforts. Importantly, these points apply to ECRs working to promote change on a systemic level, not only those improving aspects of their own work. In both sets of recommendations, we underline the importance of incentivizing and providing time and resources for systems-level science improvement activities, including ECRs in organizational decision-making processes, and working to dismantle structural barriers to participation for marginalized groups. We further highlight obstacles that ECRs face when working to promote reform, as well as proposed solutions and examples of current best practices. The abstract and recommendations for stakeholders are available in Dutch, German, Greek (abstract only), Italian, Japanese, Polish, Portuguese, Spanish, and Serbian
    corecore