6 research outputs found

    Functional analysis of the Saccharomyces cerevisiae YFR021w/YGR223c/YPL100w ORF family suggests relations to mitochondrial/peroxisomal functions and amino acid signalling pathways.

    No full text
    Saccharomyces cerevisiae YFR021w, YGR223c and YPL100w are paralogous ORFs of unknown function. Phenotypic analysis of overexpression, single-, double- and triple-ORF deletion strains under various growth conditions indicated mitochondria-related functions for all three ORFs. Two-hybrid screens of a yeast genomic library identified potentially interacting proteins for the three ORFs. Among these, the transcriptional activator Rtg3p interacted with both Yfr021wp and Ypl100wp and both ORF single deletions reduced the constitutive expression of the RTG-regulated CIT2 and DLD3 genes and caused typical retrograde response of CIT2 and DLD3 under growth conditions requiring functional mitochondria, indicating that YFR021w and YPL100w are also involved in unidentified mitochondrial functions. Ptr3p, a component of the amino acid sensor Ssy1p/Ptr3p, was also found as a two-hybrid interactant of Yfr021wp. Of the three single-ORF deletions, ypl100w Delta exhibited ptr3 Delta-similar phenotypes. These findings, combined with the fact that RTG-dependent expression is modulated by specific amino acids, suggested possible relations of Yfr021wp and Ypl100wp to amino acid signalling pathways. Under most conditions examined, the effects of the single- and double-ORF deletions indicated that YFR021w, YPL100w and YGR223c are not parts of the same pathway. We found no unique phenotype attributed to the deletion of YGR223c. However, its function interferes with the function of the other two ORFs, as revealed by the effects of double- and triple-ORF deletions

    Complete DNA sequence of yeast chromosome XI.

    No full text
    The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.0Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The complete sequence of the yeast chromosome III.

    No full text
    The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function
    corecore