40 research outputs found

    String Theory and Turbulence

    Get PDF
    We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.Comment: LaTeX; 15 pages, two figures; v.2: slight changes to text, footnotes and references adde

    Quantum Gravity and Turbulence

    Get PDF
    We apply recent advances in quantum gravity to the problem of turbulence. Adopting the AdS/CFT approach we propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. In the gravitational context, turbulence is intimately related to the properties of spacetime, or quantum, foam.Comment: 8 pages, LaTeX; Honorable Mention in the 2010 Gravity Research Foundation Essay Contes

    Bell's Inequalities, Superquantum Correlations, and String Theory

    Full text link
    We offer an interpretation of super-quantum correlations in terms of a "doubly" quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension \alpha' and the string coupling constant g_s, is such a super-quantum theory, one that transgresses the usual quantum violations of Bell's inequalities. We also discuss the \hbar\to\infty limit of quantum mechanics in this context. As a super-quantum theory, string theory should display distinct experimentally observable super-correlations of entangled stringy states.Comment: 7 pages, revtex

    Toward a Background Independent Quantum Theory of Gravity

    Full text link
    Any canonical quantum theory can be understood to arise from the compatibility of the statistical geometry of distinguishable observations with the canonical Poisson structure of Hamiltonian dynamics. This geometric perspective offers a novel, background independent non-perturbative formulation of quantum gravity. We invoke a quantum version of the equivalence principle, which requires both the statistical and symplectic geometries of canonical quantum theory to be fully dynamical quantities. Our approach sheds new light on such basic issues of quantum gravity as the nature of observables, the problem of time, and the physics of the vacuum. In particular, the observed numerical smallness of the cosmological constant can be rationalized in this approach.Comment: Awarded Honorable Mention, 2004 Gravity Research Foundation Essay Competition; 8 pages, LaTe

    Inconsistency of QED in the Presence of Dirac Monopoles

    Full text link
    A precise formulation of U(1)U(1) local gauge invariance in QED is presented, which clearly shows that the gauge coupling associated with the unphysical longitudinal photon field is non-observable and actually has an arbitrary value. We then re-examine the Dirac quantization condition and find that its derivation involves solely the unphysical longitudinal coupling. Hence an inconsistency inevitably arises in the presence of Dirac monopoles and this can be considered as a theoretical evidence against their existence. An alternative, independent proof of this conclusion is also presented.Comment: Extended and combined version, refinements added; 20 LaTex pages, Published in Z. Phys. C65, pp.175-18

    Modeling Time's Arrow

    Full text link
    Quantum gravity, the initial low entropy state of the Universe, and the problem of time are interlocking puzzles. In this article, we address the origin of the arrow of time from a cosmological perspective motivated by a novel approach to quantum gravitation. Our proposal is based on a quantum counterpart of the equivalence principle, a general covariance of the dynamical phase space. We discuss how the nonlinear dynamics of such a system provides a natural description for cosmological evolution in the early Universe. We also underscore connections between the proposed non-perturbative quantum gravity model and fundamental questions in non-equilibrium statistical physics.Comment: 18 page

    The Big Bang as the Ultimate Traffic Jam

    Full text link
    We present a novel solution to the nature and formation of the initial state of the Universe. It derives from the physics of a generally covariant extension of Matrix theory. We focus on the dynamical state space of this background independent quantum theory of gravity and matter, an infinite dimensional, complex non-linear Grassmannian. When this space is endowed with a Fubini--Study-like metric, the associated geodesic distance between any two of its points is zero. This striking mathematical result translates into a physical description of a hot, zero entropy Big Bang. The latter is then seen as a far from equilibrium, large fluctuation driven, metastable ordered transition, a ``freezing by heating'' jamming transition. Moreover, the subsequent unjamming transition could provide a mechanism for inflation while rejamming may model a Big Crunch, the final state of gravitational collapse.Comment: 8 pages, This essay received an honorable mention in the Gravity Research Foundation Essay Competition, 200
    corecore