23 research outputs found

    Quantification of Retinal and Choriocapillaris Perfusion in Different Stages of Macular Telangiectasia Type 2

    Get PDF
    Purpose: To quantify the retinal and choriocapillaris perfusion in different disease stages of macular telangiectasia type 2 (MacTel) using optical coherence tomography-angiography (OCT-A). / Methods: We examined 76 eyes of 76 patients and 24 eyes of 24 age-related controls. Participants underwent multimodal imaging, including OCT and OCT-A. Patients' eyes were divided into three groups considering predefined criteria from funduscopy, OCT, and fluorescein angiography, thus reflecting the disease severity (“early,” “advanced,” and “neovascular”). Quantitative analyses of vessel density (VD), skeleton density (SD), and fractal dimension (FD) were conducted in the superficial and deep retinal plexus and in the avascular layer. The choriocapillaris was analyzed for mean signal intensity and percentage of nondetectable perfused choriocapillaris-area (PNPA). / Results: The deep retinal plexus showed a progressive decrease of mean VD, SD, and FD in the temporal parafovea in all disease stages. In the superficial layer, VD, SD, and FD were significantly decreased in the temporal parafovea of advanced and neovascular stages, while these parameters did not differ from controls in early stages. In MacTel, signals of blood flow were also detectable at the level of the avascular layer and showed a significant increase with disease progression. The choriocapillaris in MacTel showed a significant increase of mean PNPA and a decrease of mean signal intensity in comparison to controls. These findings were consistent in all disease stages. / Conclusions: Quantitative OCT-A data show a progressive rarefication of the retinal microvasculature in MacTel. We propose an altered choriocapillaris perfusion as a possibly early alteration of the disease

    Right-angled vessels in macular telangiectasia type 2

    Get PDF
    PURPOSE: To evaluate the role of right-angled vessels (RAVs) during disease progression in macular telangiectasia type 2 (MacTel). METHODS: In this study, 100 eyes of 52 patients and 52 eyes of 26 age-related controls were examined using fundus photography, spectral-domain optical coherence tomography (SD-OCT), OCT angiography (OCT-A) and fundus fluorescein angiography (FFA). Two masked readers graded fundus photographs of patients' eyes into five disease stages according to Gass and Blodi, and evaluated all eyes for the presence of RAVs. If RAVs were present, their course and origin (arterial vs venous) was evaluated with OCT-A and FFA, respectively. Additionally, we looked for morphological correlates of these vessels on SD-OCT scans. Neovascular eyes were analysed for the presence of RAVs and for morphological changes on formation of neovascularisations (NVs). RESULTS: In OCT-A, RAVs were already detectable in eyes with early stages (1 to 2), could be tracked from superficial to outer retinal layers and were shown to form anastomoses in the outer retina with disease progression. These vessels were of both arterial and venous origin as shown by early phase FFA. Dilated capillaries and RAVs in OCT-A corresponded to hyper-reflective alterations of the outer retina on SD-OCT scans. In 19/19 eyes, NVs were associated with the presence of RAVs, and RAVs were shown to directly connect to neovascular complexes and to undergo morphological changes upon NV formation. CONCLUSIONS: The results emphasise the role of RAVs during disease progression from an early stage on and demonstrate their involvement in the development of secondary NVs in MacTel

    Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2

    Get PDF
    IMPORTANCE: As currently used, microperimetry is a burdensome clinical testing modality for testing retinal sensitivity requiring long testing times and trained technicians. OBJECTIVE: To create a deep-learning network that could directly estimate function from structure de novo to provide an en face high-resolution map of estimated retinal sensitivity. DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional imaging study using data collected between January 1, 2016, and November 30, 2017, from the Natural History Observation and Registry of macular telangiectasia type 2 (MacTel) evaluated 38 participants with confirmed MacTel from 2 centers. MAIN OUTCOMES AND MEASURES: Mean absolute error of estimated compared with observed retinal sensitivity. Observed retinal sensitivity was obtained with fundus-controlled perimetry (microperimetry). Estimates of retinal sensitivity were made with deep-learning models that learned on superpositions of high-resolution optical coherence tomography (OCT) scans and microperimetry results. Those predictions were used to create high-density en face sensitivity maps of the macula. Training, validation, and test sets were segregated at the patient level. RESULTS: A total of 2499 microperimetry sensitivities were mapped onto 1708 OCT B-scans from 63 eyes of 38 patients (mean [SD] age, 74.3 [9.7] years; 15 men [39.5%]). The numbers of examples for our algorithm were 67 899 (103 053 after data augmentation) for training, 1695 for validation, and 1212 for testing. Mean absolute error results were 4.51 dB (95% CI, 4.36-4.65 dB) when using linear regression and 3.66 dB (95% CI, 3.53-3.78 dB) when using the LeNet model. Using a 49.9 million–variable deep-learning model, a mean absolute error of 3.36 dB (95% CI, 3.25-3.48 dB) of retinal sensitivity for validation and test was achieved. Correlation showed a high degree of agreement (Pearson correlation r = 0.78). By paired Wilcoxon rank sum test, our model significantly outperformed these 2 baseline models (P < .001). CONCLUSIONS AND RELEVANCE: High-resolution en face maps of estimated retinal sensitivities were created in eyes with MacTel. The maps were of unequalled resolution compared with microperimetry and were able to correctly delineate functionally healthy and impaired retina. This model may be useful to monitor structural and functional disease progression and has potential as an objective surrogate outcome measure in investigational trials

    Dark-Adapted Two-Color Fundus-Controlled Perimetry in Macular Telangiectasia Type 2

    Get PDF
    Purpose: Macular telangiectasia type 2 (MacTel) is a bilateral neurodegenerative disorder of the central macula. Previous findings indicated more functional impairment in low light conditions. We sought to further characterize retinal dysfunction using dark-adapted two-color fundus-controlled perimetry ("scotopic microperimetry"). Methods: Participants of the MacTel Natural History Observation Registry study and age-matched healthy controls underwent retinal imaging including dual wavelength autofluorescence macular pigment optical density (MPOD) measurement. Retinal sensitivity was assessed with scotopic microperimetry using cyan (505 nm) and red (627 nm). Disease was graded into classes of MPOD loss (0 to 3). For perimetry analysis, the differences of the mean sensitivities (MacTel minus controls) were compared at each test location and the results were aggregated to global indices. Results: Thirty-four eyes (19 patients, mean age 62.2 years) were compared with 25 eyes (25 controls, mean age 61.5 years). Both cyan and red sensitivity were lower in MacTel. This was more pronounced at one- and three-degree eccentricity. Eyes with MPOD class 0 did not exhibit a functional deficit. Class 1 had impaired cyan, but normal red sensitivity. Class 2 and 3 behaved similarly and had impaired cyan and red sensitivity with a relatively higher cyan impairment. Conclusions: Rods might be compromised to a greater extent than cones. Linking to previous studies, our results might also hint toward (postreceptoral) dysfunction of the cone system in very early disease stages. Macular pigment loss and global perimetry indices seemed to reflect functional impairment and might be useful as adjunct measures for disease progression

    Divergent amino acid and sphingolipid metabolism in patients with inherited neuro-retinal disease

    Get PDF
    OBJECTIVES: The non-essential amino acids serine, glycine, and alanine, as well as diverse sphingolipid species, are implicated in inherited neuro-retinal disorders and are metabolically linked by serine palmitoyltransferase (SPT), a key enzyme in membrane lipid biogenesis. To gain insight into the pathophysiological mechanisms linking these pathways to neuro-retinal diseases we compared patients diagnosed with two metabolically intertwined diseases: macular telangiectasia type II (MacTel), hereditary sensory autonomic neuropathy type 1 (HSAN1), or both. METHODS: We performed targeted metabolomic analyses of amino acids and broad sphingolipids in sera from a cohort of MacTel (205), HSAN1 (25) and Control (151) participants. RESULTS: MacTel patients exhibited broad alterations of amino acids, including changes in serine, glycine, alanine, glutamate, and branched-chain amino acids reminiscent of diabetes. MacTel patients had elevated 1-deoxysphingolipids but reduced levels of complex sphingolipids in circulation. A mouse model of retinopathy indicates dietary serine and glycine restriction can drive this depletion in complex sphingolipids. HSAN1 patients exhibited elevated serine, lower alanine, and a reduction in canonical ceramides and sphingomyelins compared to controls. Those patients diagnosed with both HSAN1 and MacTel showed the most significant decrease in circulating sphingomyelins. CONCLUSIONS: These results highlight metabolic distinctions between MacTel and HSAN1, emphasize the importance of membrane lipids in the progression of MacTel, and suggest distinct therapeutic approaches for these two neurodegenerative diseases

    Patterns, predictors and prognostic relevance of high-grade hematotoxicity after temozolomide or temozolomide-lomustine in the CeTeG/NOA-09 trial

    Get PDF
    PURPOSE: In the randomized phase III trial CeTeG/NOA-09, temozolomide (TMZ)/lomustine (CCNU) combination therapy was superior to TMZ in newly diagnosed MGMT methylated glioblastoma, albeit reporting more frequent hematotoxicity. Here, we analyze high grade hematotoxicity and its prognostic relevance in the trial population. METHODS: Descriptive and comparative analysis of hematotoxicity adverse events ≥ grade 3 (HAE) according to the Common Terminology of Clinical Adverse Events, version 4.0 was performed. The association of HAE with survival was assessed in a landmark analysis. Logistic regression analysis was performed to predict HAE during the concomitant phase of chemotherapy. RESULTS: HAE occurred in 36.4% and 28.6% of patients under CCNU/TMZ and TMZ treatment, respectively. The median onset of the first HAE was during concomitant chemotherapy (i.e. first CCNU/TMZ course or daily TMZ therapy), and 42.9% of patients with HAE receiving further courses experienced repeat HAE. Median HAE duration was similar between treatment arms (CCNU/TMZ 11.5; TMZ 13 days). Chemotherapy was more often discontinued due to HAE in CCNU/TMZ than in TMZ (19.7 vs. 6.3%, p = 0.036). The occurrence of HAE was not associated with survival differences (p = 0.76). Regression analysis confirmed older age (OR 1.08) and female sex (OR 2.47), but not treatment arm, as predictors of HAE. CONCLUSION: Older age and female sex are associated with higher incidence of HAE. Although occurrence of HAE was not associated with shorter survival, reliable prediction of patients at risk might be beneficial to allow optimal management of therapy and allocation of supportive measures. TRIAL REGISTRATION: NCT01149109

    Binocular Inhibition of Reading in Macular Telangiectasia Type 2

    Get PDF
    Purpose: To assess the presence of binocular gain in macular telangiectasia type 2 (MacTel) and its correlation to paracentral scotomas. Methods: Sixty-eight patients with MacTel were consecutively recruited for a cross-sectional analysis. Best-corrected visual acuity (BCVA), reading acuity, and reading speed were tested monocularly and binocularly. Macular retinal sensitivity was examined with fundus-controlled perimetry (microperimetry). Scotomas were quantified by their size, their depth, and their proximity to the fovea. Results: Binocular reading speed and acuity were lower than monocular reading speed and acuity in the functionally better eye (142 vs. 159 words per minute and 0.43 vs. 0.28 log reading acuity determination, P < 0.001). Magnitude of binocular inhibition of reading speed was correlated to the degree of interocular functional difference (R2 = 0.61, P < 0.001). This correlation was not found for reading acuity or BCVA (R2 < 0.03). Binocular reading speed was negatively correlated to size of right and left eye scotomas, with bigger effect size for left eye scotomas. The magnitude of binocular inhibition was correlated to size of left eye scotomas, but not of right eye scotomas. When both eyes had similar scotoma characteristics, the right eye was more frequently the better reading eye. Conclusions: We provide evidence for the presence of binocular inhibition of reading performance in MacTel, likely due to binocular rivalry. This may result from the characteristic paracentral scotomas in noncorresponding retinal fields and, in particular, a disruptive projection of scotomas in reading direction arising from the left eyes. Patients may benefit from occluding one eye while reading

    Analysis of Serum miRNA in Glioblastoma Patients: CD44-Based Enrichment of Extracellular Vesicles Enhances Specificity for the Prognostic Signature

    No full text
    Glioblastoma is a devastating disease, for which biomarkers allowing a prediction of prognosis are urgently needed. microRNAs have been described as potentially valuable biomarkers in cancer. Here, we studied a panel of microRNAs in extracellular vesicles (EVs) from the serum of glioblastoma patients and evaluated their correlation with the prognosis of these patients. The levels of 15 microRNAs in EVs that were separated by size-exclusion chromatography were studied by quantitative real-time PCR, followed by CD44 immunoprecipitation (SEC + CD44), and compared with those from the total serum of glioblastoma patients (n = 55) and healthy volunteers (n = 10). Compared to total serum, we found evidence for the enrichment of miR-21-3p and miR-106a-5p and, conversely, lower levels of miR-15b-3p, in SEC + CD44 EVs. miR-15b-3p and miR-21-3p were upregulated in glioblastoma patients compared to healthy subjects. A significant correlation with survival of the patients was found for levels of miR-15b-3p in total serum and miR-15b-3p, miR-21-3p, miR-106a-5p, and miR-328-3p in SEC + CD44 EVs. Combining miR-15b-3p in serum or miR-106a-5p in SEC + CD44 EVs with any one of the other three microRNAs in SEC + CD44 EVs allowed for a prognostic stratification of glioblastoma patients. We have thus identified four microRNAs in glioblastoma patients whose levels, in combination, can predict the prognosis for these patients

    Extracellular Vesicle Separation Techniques Impact Results from Human Blood Samples: Considerations for Diagnostic Applications

    No full text
    Extracellular vesicles (EVs) are reminiscent of their cell of origin and thus represent a valuable source of biomarkers. However, for EVs to be used as biomarkers in clinical practice, simple, comparable, and reproducible analytical methods must be applied. Although progress is being made in EV separation methods for human biofluids, the implementation of EV assays for clinical diagnosis and common guidelines are still lacking. We conducted a comprehensive analysis of established EV separation techniques from human serum and plasma, including ultracentrifugation and size exclusion chromatography (SEC), followed by concentration using (a) ultracentrifugation, (b) ultrafiltration, or (c) precipitation, and immunoaffinity isolation. We analyzed the size, number, protein, and miRNA content of the obtained EVs and assessed the functional delivery of EV cargo. Our results demonstrate that all methods led to an adequate yield of small EVs. While no significant difference in miRNA content was observed for the different separation methods, ultracentrifugation was best for subsequent flow cytometry analysis. Immunoaffinity isolation is not suitable for subsequent protein analyses. SEC + ultracentrifugation showed the best functional delivery of EV cargo. In summary, combining SEC with ultracentrifugation gives the highest yield of pure and functional EVs and allows reliable analysis of both protein and miRNA contents. We propose this combination as the preferred EV isolation method for biomarker studies from human serum or plasma
    corecore