15 research outputs found

    Analysis of the carrier transport in molecularly doped polymers using the multiple trapping model with the Gaussian trap distribution

    Get PDF
    AbstractWe have performed the comprehensive analysis of the time of flight curves using the multiple trapping model with the Gaussian trap distribution. Our analysis shows that flat plateaus on the computed curves are rare events. We have shown numerically that plateau formation for the non-equilibrium transport may be due to the presence of a thin defective (depletion) layer on the sample surface (two-layer model of a polymer film). Also, to describe the Poole–Frenkel effect, we have explicitly introduced an analogous field dependence for the frequency factor

    Time-Resolved Radiation-Induced Conductivity of Polyimide and Its Description Using the Multiple Trapping Formalism

    No full text
    Polymer dielectrics subjected to intense radiation fluxes exhibit a radiation-induced conductivity (RIC). Polyimide is a good dielectric with excellent mechanical and thermal properties featuring high radiation resistance currently widely used in the spacecraft industry. Its RIC has been extensively studied in several laboratories. The purpose of the present study is to make a direct measurement of the RIC for both pulsed and continuous irradiation using a current sensing technique, which is contrary to the indirect method employing a surface-potential decay technique that is now preferred by spacecraft charging engineers. Our experiments are done in a small-signal regime excluding any recombination and dose effects. In combination with existing computer codes, we managed to develop further the conventional multiple trapping formalism and the RIC theory based on it. The main idea is to supplement an exponential trap distribution responsible for a dominant dispersive carrier transport in polymers with a small concentration of inherent deep traps which may or may not have an energy distribution. In line with this reasoning, we propose a tentative set of RIC model parameters for polyimide that accounts for the observed experimental data. The findings and their implications are discussed in a broad context of previous studies

    Non-Dispersive Carrier Transport in Molecularly Doped Polymers and the Convection-Diffusion Equation

    No full text
    We reinvestigate the applicability of the concept of trap-free carrier transport in molecularly doped polymers and the possibility of realistically describing time-of-flight (TOF) current transients in these materials using the classical convection-diffusion equation (CDE). The problem is treated as rigorously as possible using boundary conditions appropriate to conventional time of flight experiments. Two types of pulsed carrier generation are considered. In addition to the traditional case of surface excitation, we also consider the case where carrier generation is spatially uniform. In our analysis, the front electrode is treated as a reflecting boundary, while the counter electrode is assumed to act either as a neutral contact (not disturbing the current flow) or as an absorbing boundary at which the carrier concentration vanishes. As expected, at low fields transient currents exhibit unusual behavior, as diffusion currents overwhelm drift currents to such an extent that it becomes impossible to determine transit times (and hence, carrier mobilities). At high fields, computed transients are more like those typically observed, with well-defined plateaus and sharp transit times. Careful analysis, however, reveals that the non-dispersive picture, and predictions of the CDE contradict both experiment and existing disorder-based theories in important ways, and that the CDE should be applied rather cautiously, and even then only for engineering purposes

    Theoretical Analysis of the Radiation-Induced Conductivity in Polymers Exposed to Pulsed and Continuous Electron Beams

    No full text
    We have performed comparative numerical calculations using a multiple trapping (MT) formalism with an exponential and an aggregate two-exponential trap distributions for describing two mostly used experimental setups for studying the radiation-induced conductivity (RIC) and the time-of-flight (TOF) effects. Computations have been done for pulsed and long-time electron-beam irradiations in a small-signal regime. Predictions of these two approaches differ appreciably in both setups. The classical MT approach proved very popular in photoconductive polymers generally and in molecularly doped polymers in particular, while a newly proposed complex MT worked well in common polymers. It has been shown that the complex MT successfully accounts for the presence of inherent deep traps, which may or may not have an energy distribution

    Two-Layer Multiple Trapping Model for Charge Transport in Molecularly Doped Polymers

    No full text
    Organic materials are being investigated for their electronic properties. Such materials are especially attractive for lightweight, flexible, and low-cost solar cells and light emitting devices, as well as transistors and electrophotographic photoreceptors. Yet, even after 40 years of work and a large database, the physics and chemistry that determines the electronic properties of organic materials are not well understood. This paper briefly summarizes data obtained from a new experimental variant of the time of flight (TOF) technique called TOF1a, which are compared to the predictions of a two-layer multiple trapping model (MTM) with an exponential distribution of traps. In TOF1a the charge generation depth is varied continuously, from surface generation to bulk generation, by varying the energy of the electron-beam excitation source. This produces systematic changes in the shape of the current transient that can be compared to the predictions of the two-layer MTM. We find that we can semi-quantitatively fit current transient data over the whole time range of the experiment, but only by using theoretical parameters that lie in a narrow range, the extent of which we quantify here

    Two-Layer Multiple Trapping Model for Charge Transport in Molecularly Doped Polymers

    No full text
    Organic materials are being investigated for their electronic properties. Such materials are especially attractive for lightweight, flexible, and low-cost solar cells and light emitting devices, as well as transistors and electrophotographic photoreceptors. Yet, even after 40 years of work and a large database, the physics and chemistry that determines the electronic properties of organic materials are not well understood. This paper briefly summarizes data obtained from a new experimental variant of the time of flight (TOF) technique called TOF1a, which are compared to the predictions of a two-layer multiple trapping model (MTM) with an exponential distribution of traps. In TOF1a the charge generation depth is varied continuously, from surface generation to bulk generation, by varying the energy of the electron-beam excitation source. This produces systematic changes in the shape of the current transient that can be compared to the predictions of the two-layer MTM. We find that we can semi-quantitatively fit current transient data over the whole time range of the experiment, but only by using theoretical parameters that lie in a narrow range, the extent of which we quantify here
    corecore