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We have performed the comprehensive analysis of the time of flight curves using the multiple trapping
model with the Gaussian trap distribution. Our analysis shows that flat plateaus on the computed curves
are rare events. We have shown numerically that plateau formation for the non-equilibrium transport
may be due to the presence of a thin defective (depletion) layer on the sample surface (two-layer model
of a polymer film). Also, to describe the Poole–Frenkel effect, we have explicitly introduced an analogous
field dependence for the frequency factor.
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1. Introduction

Modern optoelectronic devices such as light-emitting diodes [1],
field-effect transistors [2] and solar cells [3] using organic semicon-
ductors require profound understanding of the charge carrier trans-
port for their efficient operation similar to that already achieved in
the electrophotographic technology [4,5]. In a recently published
review [6], the problem of the charge carrier transport in organic
semiconductors has been discussed in detail. It shows that the
Gaussian disorder model (GDM) based on a hopping transport of
charge carriers still remains a powerful instrument for describing
charge motion in disordered organic substances (small molecule
glasses, molecularly doped polymers, polymers with charge-trans-
porting molecules residing in the main chain or as pendant groups)
[7,8].

As most device-operation oriented calculations refer to
steady-state conditions [1–3], they mostly rely on the well-known
empirical expressions for carrier mobilities at different fields and
temperatures derived from computer (mainly Monte-Carlo) simu-
lations based on the GDM for a model disordered organic semicon-
ductor [4,8].

Experimental studies of the charge carrier transport employ the
famous time of flight (TOF) technique, which allows not only to
measure the carrier mobility but to study the non-equilibrium
phase of the transport process by observing TOF current transients
on a wide time scale following a d-pulse excitation. Based on the
optical TOF technique, these transients have been shown to consist
of an initial spike transforming into a flat or slightly sloping
evier B.V.
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plateau followed by an anomalously long tail (when plotted in
linear j� t coordinates) and seemingly agree with the GDM predic-
tions [4].

To supplement the model Monte-Carlo simulations, we
developed a numerical program for a quasi-band analog of the
GDM, the so-called multiple trapping model with the Gaussian trap
distribution (MTMg) [9,10]. Both approaches give close results as
far as TOF shapes are concerned. One of the factors, which stimu-
lated this theoretical effort, is the much-changed situation in the
carrier transport after we introduced an electron gun to perform
TOF measurements in the widest dynamic range realizing all three
modifications of the TOF experiment [11]. These are the conven-
tional TOF method with the surface generation, the TOF-2 tech-
nique with the bulk generation and a TOF-1a variant in which
the width of the generation zone varies in a controlled manner.

It has been revealed that the carrier transport in a typical polar
MDP is non- equilibrium despite the fact that TOF curves feature a
flat plateau [9–11]. Also, it was shown that cusps (rising plateaus),
traditionally disregarded by investigators [4], reflected some inter-
nal property of a MDP sample. To explain the whole plethora of
these new observations, a two-layer multiple trapping model for
universal current transients in MDPs has been developed [12]. Its
general features are as follows.

Real MDP sample is represented by a two-layer structure con-
sisting of a thin surface layer (about 1 lm thick) and a polymer it-
self. The mobility of charge carriers in the surface layer is several
times lower than in the bulk as a result of increased trap concen-
tration in it. It is important that the same exponential MTM (except
trap concentrations) apply to both regions. The origin of traps re-
mained obscure but this two-layer model allowed explaining
experimental observations previously viewed as contradictory
[13,14].
C-ND license.
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Fig. 1. Computed TOF transients (solid curves) in logarithmic coordinates. Param-
eter r equals 0.07 (1), 0.1 (2) and 0.13 eV (3). Dashed straight lines refer to a semi-
infinite sample and belong to the corresponding solid curve. The procedure to find
ttr is illustrated for curve 3.

Table 1
Computed slopes and times of flight for three values of r.

Parameter r, eV

0.07 0.10 0.13

b1 60.03 0.14 0.26
b2 9.7 3.0 2.0
t0 (ms) 5.60 � 10�3 0.135 6.10
ttr (ms) 6.10 � 10�3 0.166 9.00
t1=2 (ms) 6.30 � 10�3 0.204 12.3
W 0.11 0.34 0.50
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An exponential trap distribution with a rather large dispersion
parameter (close to 0.8) describes a dispersive carrier transport.
Then, TOF-2 curves, obviously unaffected by the surface layer (bulk
excitation), should have a non-Gaussian form in accordance with
experiment. Transient curves produced by 3 keV electrons (maxi-
mum range about 0.3 lm) feature pronounced cusps as carriers
exit generation zone in the defective layer and enter the bulk
where their mobility is several times higher. As electron energy
increases, the fraction of carriers generated in the bulk increases
leading to the formation of the progressively weaker cusps. At
some electron energy a perfectly flat plateau appears as a result
of fine tuning of two currents, one being due to carriers generated
in the surface layer, the other arising from bulk generated carriers.
At still higher energies, the plateau begins to slope, until finally, the
bulk excitation makes the current form featureless when viewed in
linear coordinates. It is important to stress that in all cases, what-
ever the form of the plateau (flat one included), the tail stays
anomalously broad, reflecting dispersive rather than the Gaussian
carrier transport. The two-layer model is capable of semiquantita-
tively describing the whole sequence of the current shape changes
[12]. Surely, the above model captures truthfully the physics of the
flat plateau formation arising from an intricate interplay of carriers
emerging from the surface layer and the bulk.

In the present paper we compute TOF current transients for a
homogeneous polymer using MTMg for several values of the
disorder energy r, an electric field and temperature. Then we
introduce a two-layer model based on the MTMg aiming to explain
TOF-1a results using model parameters for a typical MDP.

2. Homogeneous polymer

In our computations we rely on reported values of the GDM
parameters extracted using the dipolar disorder formalism of Bor-
senberger and Bässler [8,15]. These are the total disorder energy r,
the mobility of carriers l0 extrapolated to zero electric field (via
Poole–Frenkel functional dependence) for temperature T !1
and the mean distance q between dopant molecules calculated
using the lattice gas model (q ¼ N�1=3

d where Nd is the dopant
concentration).

The simple relationship between l0 and q [16] (notations are
standard)

l0 ¼
e

kT
q2mhh ð1Þ

allows one to define frequency mhh which may be related to the
zero-field frequency factor m00 of the model (m00 ¼ 6mhh [9]). MTMg
parameters r and l0 are taken to be the same as given above. The
last parameter of the model, the lifetime of the quasi-free carriers
s0, is found from the relationship m00s0 ¼ 3:0 [9]. The situation with
a finite electric field is discussed later.

Parameter values chosen for numerical simulations are as fol-
lows: l0 ¼ 0:01 cm2/V s, r ¼ 0:13 eV and m00 ¼ 1011 c�1 and are
close to those for polycarbonate doped with 30 wt.% of aromatic
hydrazone DEH (30%DEH:PC) [9,17]. In addition, the sample thick-
ness L is 20 lm, the electric field F ¼ 20 V/lm, temperature 290 K
(kT = 0.025 eV) and the planar density of the generated carriers
108 cm�2 (a small signal regime). When these change, it is clearly
stated.

We start our analysis by investigating effects of the total disor-
der r (Fig. 1). Current curves coincide at early times (6 10 fs), then
they start to diverge, their decay generally following an algebraic
law j / t�b. The exponent b ¼ � d lg j

d lg t depends on time and progres-
sively diminishes until a kink occurs signaling carrier transit across
the sample. Two tangents (dotted straight lines) on a lg t � lg j plot
just preceding and following the kink intersect at the transit time ttr

(shown on the figure for curve 3). Also, the slopes of these tangents
b1 (before) and b2 (after the transit) are useful characteristics of the
carrier transport. Values of these parameters are summarized in Ta-
ble 1. We see that as r rises ttr and b1 both increase (especially
strongly the first one) but b2 systematically decreases.

It is known that MTMg predicts mobility equilibration at long
times. Dashed straight lines on the figure show the equilibrium
currents in a semi-infinite sample. Also, note that TOF curves 2
and 3 are similar to dispersive transients if viewed at times brac-
keting the time of flight (10�2ttr 6 t 6 102ttr) but the famous crite-
rion of the Scher–Montroll theory [18] or the MTM [11] (b1 þ b2 ¼
2:0) fails.

Fig. 2 gives the above curves in a linear j� t representation in a
normalized form. Traditionally found two times of flight (t0 and t1=2

shown for curve 2) and the relative tail width W ¼ t1=2�t0

t1=2
are also

included in Table 1. While for curves 1 and 2 this procedure is
rather straightforward, finding this data for the last curve is hardly
possible. Still, according to the traditional classification only two
first curves may be qualified as non-dispersive (in a sense that they
can be readily processed in linear coordinates) whereas the last
one should definitely be regarded as a dispersive one. Note that
the point with coordinates (1, 1) on the figure corresponds to the
intersection of the two tangents mentioned above.

Unlike curves 2 and 3, which are non-equilibrium, curve 1 (see
Figs. 1 and 2) is unique as it is characterized by a flat plateau. This
feature is certainly due to the low value of r. Experiment fully cor-
roborates this conclusion: TAPC glass (r ¼ 0:067 eV) and TAPC
doped polystyrene at high loadings (r 6 0:075 eV) [19,20] exhibit
flat plateaus with times of flight in the microsecond range in full
accord with our computations.

It is known that the GDM (and even more so the MTMg) is inca-
pable of explaining consistently the origin of the Poole–Frenkel



Fig. 2. The same transients as on Fig. 1 but in the linear normalized coordinates.
The procedure to find t0 and t1=2 is shown for curve 2.
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(PF) effect. Instead, the dipolar disorder formalism introduces it in
a prescribed manner contrary to the dipolar glass model, which
explains this effect self-consistently [21,22]. It is not clear, which
of the MTMg parameters fits best to account for the PF effect, if
only in a prescribed manner. It seems to be the frequency factor
m0. Indeed, according to [12,22] the rate-limiting step in the dipolar
glass model is the thermally activated release of carriers trapped
by critical traps whose radius is effectively controlled by the
applied electric field. Finally, we have
m0 ¼ kPFm00: ð2Þ

The factor kPF is supposed to be close to the ratio of the carrier
mobilities found at a given field strength F to that at F ? 0. In our
analysis, kPF is equal to this ratio taken from the published data for
30%DEH:PC [24]. The reported value of the PF slope S ¼ � d lgl

dF1=2 is
0.39 (lm/V)1/2.

Fig. 3 presents the computation results. TOF current transients
are calculated with and without account of the PF effect. Also
shown are equilibrium currents in a semi-infinite sample
Fig. 3. Computed TOF transients (solid curves) in logarithmic coordinates with (1, 3,
5) and without (2, 4, 6) taking into account PF effect (see Table 2). Electric field 200
(1, 2), 20 (3, 4) and 2 V/lm (5, 6). Dashed straight lines refer to a semi-infinite
sample and belong to the corresponding solid curve.
(L!1) given by dashed straight lines with primed numbers. As
expected, only the field dependence of the steady-state currents
(curve 1 on Fig. 4) strictly follows the PF law with the above indi-
cated value of S (this dependence refers to the equilibrium mobil-
ity). We also processed the curves of Fig. 3 in linear coordinates
and the resulting data for all three times of flight (ttr , t0 and t1=2)
are presented in Table 2 and Fig. 4.

According to the MTMg analysis [25], the equilibrium mobility
~l in our case is equal to 8� 10�6 cm2/V s and does not depend
on the electric field. We equate it with the zero-field mobility
lð0Þ and use it as a standard in evaluating PF effect represented
by the ratio l=lð0Þ where l stands for the mobility found using
computed times of flight given in Table 2.

There are some problems with estimating data points for F = 0
for all curves except a theoretical one. Direct numerical computa-
tions for very small electric fields (60.01 V/lm) are difficult to per-
form and besides, one has to take into account the presence of an
ordinary diffusion (neglected so far). It is quite fair to assume that
all zero-field mobilities are very close to lð0Þ.

It is seen that curves on Fig. 4 fall into two groups, one relating to
PF effect (1–4) and the other (5–7) describing data for field indepen-
dent frequency factor. In the first group, data based on t1=2 best
reproduces the PF theoretical dependence, followed by ttr and t0.
But still, data scatter is not that conspicuous. We see that even for
m0 ¼ const the ratio l/l(0) increases as the field rises, this fact being
in line with the carrier transport becoming more and more disper-
sive. For completeness, we indicate the maximum values of this ratio
at 200 V/lm: 508 (group 1) and 3.42 (group 2), respectively.

To judge the influence of the field on the current shape, we plot-
ted normalized curves from Fig. 3 in linear coordinates as well
(Fig. 5). Again, calculations include the case of no PF effect. The
following observations should be noted.

At low fields (less than 20 V/lm) the PF effect is of almost no
importance as far as the transient shape is concerned although
the current shape itself changes dramatically (compare curves 6,
5, and 4, 3). In the absence of PF effect the transient shape changes
continuously in the whole field range (as already reported in [9]),
while PF curves practically do not change in the field range 20–
200 V/lm, their transient shape acquiring an almost universal
character. This behavior is reminiscent of the famous universality
law found experimentally [18] and explained by the SM theory
[18] or the MTM [26]. A weak universality found in the present
work appears on j� t plots and only in the time interval embracing
the time of flight.
Fig. 4. Mobility ratio l=lð0Þ as a function of the square root of the electric field.
Theoretical curve 1 and the computed mobilities based on t1=2 (2, 7), ttr (3, 6) and t0

(4, 5). PF effect taken into account (1–4) and neglected (5–7). The symbols are
computed data points.



Table 2
Computed slopes and times of flight for three values of the electric field with and
without account of the prescribed PF effect (see text).

Parameter Field, V/lm

2 20 200

PF factor 1 1.73 1 5.72 1 248
b1 0.052 0.052 0.12 0.12 0.215 0.17
b2 4.7 4.7 3.2 3.2 2.5 2.55
t0 (ms) 11.7 6.86 0.77 0.136 36.5 � 10�3 24.6 � 10�5

ttr (ms) 13.3 7.47 0.98 0.167 56.9 � 10�3 28.4 � 10�5

t1=2 (ms) 15.4 8.78 1.18 0.205 69.3 � 10�3 38.6 � 10�5

W 0.22 0.24 0.35 0.37 0.47 0.36

Fig. 5. Transients 2–6 from Fig. 3 presented in the linear normalized coordinates.
�is the current density at the time of flight.

Fig. 6. Computed TOF transients (solid curves) in logarithmic coordinates referrin
to r equal to 0.07 (1–3) and 0.1 eV (4–6) for temperatures 350 (1, 4), 290 (2, 5) an
250 K (3, 6). Dashed straight lines refer to a semi-infinite sample and belong to th
corresponding solid curve.
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Fig. 7. Dependence of the times of flight on the inverse squared temperature.
At last, we performed numerical calculations of the mobility
temperature dependence. Computed curves are presented in
Fig. 6 for two values of r (0.07 and 0.1 eV) and three temperatures
(250, 290 and 350 K) with dashed straight lines referring again to a
semi-infinite sample. Here we plot numerical data only for the case
of m0 ¼ const intending to explore mainly the effects of a non-equi-
librium transport. The plots on Fig. 7 represent the temperature
dependence of the transit times as a function of 1=T2.

Analytic formula [25] predicts that with a good approximation

~l�1 / exp r2

2k2T2

� �
which is slightly different from the famous

GDM expression ~l�1 / exp 4r2

9k2T2

� �
[7,8]. Our main interest is to

check whether the general dependence ln l�1 / 1=T2 holds. One
notes that for r ¼ 0:07 eV (2) even the theoretical curve shows
some curvature but data points are very close to each other and
to the theoretical curve. In the case of r ¼ 0:1 eV (1) the theoretical
curve becomes straight but computed times of flight increasingly
deviate from the theoretical dependence as temperature falls. As
in the case of the PF effect, the least deviating data points belong
to t1=2 with those of t0 deviating most. As a result, effective values
of r found from processing data for t1=2, ttr and t0 are 0.084, 0.080
and 0.074 eV respectively compared to theoretical value 0.1 eV. We
see that the effect of the non-equilibrium transport in this case is
quite perceptible but for r ¼ 0:07 eV it is hardly seen.
3. Non-homogeneous polymer: two-layer model

Recently, we have shown that according to the GDM numerous
examples of the flat plateaus on experimental TOF curves should
not even appear [9]. In a similar situation, involving the weakly
dispersive transport (a � 0:85) one had to apply the two-layer
multiple trapping model for universal current transients to de-
scribe successfully the experimental results obtained by a TOF-1a
technique in 30%DEH:PC [12]. Let us try the same approach for
the MTMg.

MTMg parameters describing the carrier transport reported in
[11,12] have been slightly corrected to better fit the existing data
cited in [24] so that r ¼ 0:128 eV, m0 ¼ 1:25� 1011 s�1,
l0 ¼ 0:01 cm2/V s, s0 ¼ 2:4� 10�11 s. A defective layer 1 lm thick
with inferior transport characteristics compared to the bulk has
been introduced into the model (the sample thickness 13.8 lm,
the electric field 20 V/lm).

Unlike [12], we propose to explain the origin of the surface
defective layer as arising from the sublimation of the dopant mol-
ecules through the free surface exposed to air during coating/dry-
ing procedure. In electron-beam experiments reported in [11,12] it
is this free side of the samples that invariably faced the beam. As a
result, a thin depletion layer with a reduced concentration of the
dopant has been controlling TOF transients. Due to an exponential
concentration dependence, the carrier mobility in the depletion
layer will be lower than in the bulk. Thus, there is no need to



Fig. 8. Computed TOF-1a transients for a two-layer model in logarithmic coordi-
nates. The thickness of the generation zone 1 (1), 1.5 (2), 2 (3), 2.4 lm (4) and the
case of a homogeneous generation (5). Electric field 20 V/lm.

Fig. 9. The same transients as on Fig. 8 but in the linear normalized coordinates (all
curves are normalized on t0 and j0 of curve 3).
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invoke any extrinsic traps. Also, it is only natural to expect that the
Gaussian trap distribution should be the same in both parts of the
sample with r = 0.128 eV. Lowering l0 by a factor of six and apply-
ing Eqs. 1 and 2, we specify MTMg parameters for the depletion
layer. Besides, the problem of an energetic set-off between the dis-
creet transport level and the center of the trap distribution inher-
ent in the approach adopted in [12] is automatically eliminated.

Computation results show (Figs. 8 and 9) that increasing the
thickness of an irradiation zone (assumed rectangular like in
[12]) causes the form of a ‘‘shoulder’’ marking the carrier transit
across the sample to change continuously from a distinct cusp
(curves 1 and 2) through an outright flat (curve 3) and a sloping
plateau (curve 4) to an almost featureless curve 5 for the case of
the uniform irradiation.

Note the striking similarity in the shape variation found here
and reported in [12]. It follows that the MTMg predicts appearance
of flat plateaus even for the non-equilibrium regime (according to
calculations b1 ¼ 0:28 and b2 ¼ 2:05 for a uniform excitation (TOF-
2 experiment and curve 5 on Fig. 8 and 9) but only if a two-layer
approach is involved. There are some fine distinctions between
present results and those reported in [12].

The main difference concerns the shape of the TOF-2 current
transients. In the latter case, the curve is truly featureless (as the
experimental one) while curve 5 on Fig. 9 can be even processed
on a linear j� t plot, producing a transit time very close to that
relating to a flat plateau. In addition, W values for flat plateaus
do slightly differ (0.51 and 0.59 respectively).
4. Discussion

There are three experimental observations, which are central
for an understanding of the carrier transport in MDPs. These are:
(1) the electric field dependence of the mobility, (2) the tempera-
ture dependence of the mobility and (3) the transient current
shape, which is used to determine the mobility [27].

According to [28]: ‘‘In their present form, existing models includ-
ing Gaussian transport, field diffusion, Coulomb repulsion, intrinsic
shallow trap controlled mobility, the Gaussian Disorder Model, Cor-
related Disorder Models, polaron theory, and Scher–Montroll the-
ory, are unable to account for all the experimentally observed
features of charge carrier transport in disordered systems’’.

In this situation, we extended the recently proposed two-layer
MTM by replacing an exponential trap distribution with the Gauss-
ian one, thus directly incorporating two most important physical
characteristics of a real hopping process into the model. These
are the total disorder energy r as a parameter of the trap energy
distribution and the zero-field mobility in the limit T !1 as a
quasi-band mobility l0. As a result, the model captures truthfully
the non-Arrhenius mobility temperature dependence and the
exponential mobility dependence on the average spacing between
the dopants molecules as well. Again, the presence of r comprised
of the van-der-Waals and the dipolar disorder energies as given by
the dipolar glass theory [21–23] allows one to accommodate the
strong polarity effects encountered in experiment [4].

As for the current shape, the two-layer MTMg retains the ability
of its predecessor (two-layer MTM [12]) to describe the whole se-
quence of TOF-1a curves encountered in experiment (initial spike,
cusp, flat plateau, sloping shoulder, featureless curve) as the gener-
ation zone gets progressively wider with the rising electron beam
energy.

The most intricate question concerns the ubiquitous Poole–
Frenkel mobility field dependence. It has been demonstrated that
its physical origin comes from the dipolar energy landscape, which
happens to be spatially closely correlated [21–23]. The net effect of
the spatial energy correlation consists in that the thermally acti-
vated release of holes trapped by critical traps whose radius be-
comes effectively controlled by the applied electric field [22]. It
seems sound to suggest that exactly the frequency factor m0 should
be ascribed the specified field dependence, if only in a prescribed
manner at this stage.

Thus, the proposed two-layer MTMg seems to be capable of
describing the non-equilibrium bulk carrier transport under uni-
form excitation (TOF-2 experiment) and explain the appearance
of a flat plateau with anomalously broad tail at some intermediate
electron energy (TOF-1a experiment), which generally should not
be identified with the equilibration of the carrier transport. Even
more, the new model is capable of accommodating both the non-
Arrhenius mobility temperature dependence as well as its Poole–
Frenkel field dependence. As an analytical model, it is amenable
to accurate numerical calculations, which are not as time consum-
ing as the Monte-Carlo simulations.

At the request of Referee, we now compare our calculations
with the relevant Monte-Carlo simulations reported in [29,30] for
a homogeneous system. It should be noted that those simulations
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referred to a model organic semiconductor (q = 0.6 nm like in poly-
vinylcarbazole) for a range of r (in particular, r=kT) and studied
the non-dispersive to dispersive transition. Unfortunately, simula-
tion results were presented in arbitrary units only. Therefore, we
could not draw any quantitative comparisons. Still, some qualita-
tive comparisons are worth mentioning. Comparing Fig. 1 in our
work and in [29] shows that b1 rises with increasing r quite sim-
ilarly in both cases. Addressing Fig. 7 in [29], we see that curves
presented on both linear and logarithmic plots resemble very clo-
sely our curve 3 on Figs. 1 and 2 (b1 equals 0.27 and 0.26 eV respec-
tively). The similarity increases even more if t-coordinate on our
Fig. 2 is properly compressed. Thus, our numerical calculations
qualitatively agree with the model Monte-Carlo simulations
reported in [29,30].
5. Summary

We have shown that MTMg can successfully predict current
shapes provided that GDM parameters are determined within the
dipolar disorder formalism. Computations prove that the carrier
transport is surely non-equilibrium for MDPs with r P 0:09 at room
temperature. The flat plateaus on TOF transients originate from the
surface layer interference. For r 6 0:075 eV the theory predicts
transport equilibration at typical experimental conditions
(T P 250 K). All three times of flight (t1=2, ttr and t0) are quite repre-
sentative as far as the field and temperature dependence of the
mobility is concerned, the second one being of universal application.

It is important that the proposed MTMg reproduces quite truth-
fully both the non-Arrhenius temperature mobility dependence as
well as its ubiquitous PF field dependence. The first property is a
direct consequence of the model parameter r combining the
van-der-Waals and the dipolar disorder energies. While the second
one arises from the PF type field dependence of the model fre-
quency factor prescribed by the dipolar glass model [21–23].

A two-layer extension of MTMg along the lines of the two-layer
MTM recently suggested in [12] describes adequately TOF-1a re-
sults including flat plateau formation for the non-equilibrium car-
rier transport.
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