24 research outputs found
Π€ΠΎΡΠΌΡΠ»Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ Π΄Π»Ρ ΡΡΠ΅Π΄ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡΡ
Electrodynamic formulas widely used in the description of objects containing dielectric media give results contrary to physics in the case when the permittivity of the medium takes a negative value. The problem is solved by refined formulas that allow calculating the electric potentials of the point charge and the point dipole moment, the capacitance of the capacitor, as well as the energy density of the electromagnetic field and the quality factor of the material. The formulas are valid for any media, both with positive and negative real part of the complex permittivity.Π€ΠΎΡΠΌΡΠ»Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ, ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ ΠΏΡΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ΅Π΄Ρ, Π΄Π°ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠ°ΡΠΈΠ΅ ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ ΡΡΠ΅Π΄Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠΎΡΠ½Π΅Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠ΅ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Ρ ΡΠΎΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π° ΠΈ ΡΠΎΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠΏΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, Π΅ΠΌΠΊΠΎΡΡΡ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΈ Π΄ΠΎΠ±ΡΠΎΡΠ½ΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. Π€ΠΎΡΠΌΡΠ»Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ Π΄Π»Ρ Π»ΡΠ±ΡΡ
ΡΡΠ΅Π΄ ΠΊΠ°ΠΊ Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΠΈ
Electrodynamic Formulas for Media with Negative Permittivity
ΠΠΎΡΡΡΠΏΠΈΠ»Π°: 02.10.2023. ΠΡΠΈΠ½ΡΡΠ° Π² ΠΏΠ΅ΡΠ°ΡΡ: 10.11.2023.ΠΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΡ.Received: 02.10.2023. Accepted: 10.11.2023.Published in order of discussion.Π€ΠΎΡΠΌΡΠ»Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ, ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ ΠΏΡΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ΅Π΄Ρ, Π΄Π°ΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΡΠ΅ΡΠ°ΡΠΈΠ΅ ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π² ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ ΡΡΠ΅Π΄Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠΎΡΠ½Π΅Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠ΅ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Ρ ΡΠΎΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΡΡΠ΄Π° ΠΈ ΡΠΎΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠΏΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, Π΅ΠΌΠΊΠΎΡΡΡ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ ΠΈ Π΄ΠΎΠ±ΡΠΎΡΠ½ΠΎΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°. Π€ΠΎΡΠΌΡΠ»Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Ρ Π΄Π»Ρ Π»ΡΠ±ΡΡ
ΡΡΠ΅Π΄ ΠΊΠ°ΠΊ Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΡΠ°ΠΊ ΠΈ Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΠΈ.Electrodynamic formulas widely used in the description of objects containing dielectric media give results contrary to physics in the case when the permittivity of the medium takes a negative value. The problem is solved by refined formulas that allow calculating the electric potentials of the point charge and the point dipole moment, the capacitance of the capacitor, as well as the energy density of the electromagnetic field and the quality factor of the material. The formulas are valid for any media, both with positive and negative real part of the complex permittivity.Π€ΠΈΠ½Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ: ΡΠ°Π±ΠΎΡΠ° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° Π² ΡΠ°ΠΌΠΊΠ°Ρ
Π½Π°ΡΡΠ½ΠΎΠΉ ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΠΎΡΠ·Π°Π΄Π°Π½ΠΈΡ ΠΠ½ΡΡΠΈΡΡΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ ΠΈΠΌ. Π. Π. ΠΠΈΡΠ΅Π½ΡΠΊΠΎΠ³ΠΎ Π‘Π Π ΠΠ.The investigation was carried out within the state assignment of Kirensky Institute of Physics
Resonances of electromagnetic oscillations in a spherical metal nanoparticle
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°.Electrodynamic analysis of plasma oscillations in a spherical metal nanoparticle is performed. It is shown that typical reduction in the frequency and quality factor of the resonances with increasing nanoparticle radius fades if the mode number grows. Depending on the particle radius, the resonant enhancement of the electric field might considerably either increase or decrease with increasing mode number
Design of bandpass filters composed of dielectric layers separated by gratings of strip conductors
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°.We derive the design formulas for novel multilayer bandpass filters in which every dielectric layer (resonator) is separated
from the adjacent layer or external medium by a grating of strip conductors. Every grating acts as a semireflecting mirror. Such novel filters have wide stop bands compared to conventional filters with multilayer dielectric mirrors between resonators at the same passband width. The parameters of the lowpass, lumped-element prototype filter, as well as the theory of resonator-coupling coefficients, are considered in our approach. The computed frequency response of the fifth-order Chebyshev filter that was synthesized using the proposed formulas is also presented
Design of bandpass filters composed of dielectric layers separated by gratings of strip conductors
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°.We derive the design formulas for novel multilayer bandpass filters in which every dielectric layer (resonator) is separated
from the adjacent layer or external medium by a grating of strip conductors. Every grating acts as a semireflecting mirror. Such novel filters have wide stop bands compared to conventional filters with multilayer dielectric mirrors between resonators at the same passband width. The parameters of the lowpass, lumped-element prototype filter, as well as the theory of resonator-coupling coefficients, are considered in our approach. The computed frequency response of the fifth-order Chebyshev filter that was synthesized using the proposed formulas is also presented
Study of the fields scattered by a periodic strip structure of thin magnetic films
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°.Components of the fields scattered by a periodic planar strip structure of thin magnetic films possessing a uniaxial magnetic anisotropy in the plane have been calculated using the phenomenological model. Regularities in the dependence of these fields on the design parameters of the structure have been studied. The results obtained agree with the numerical analysis of the micromagnetic model of this structure. It has been shown that, near the edges of strips magnetized orthogonally to the major axis, the components of the scattered field can exceed the external magnetizing field by a few orders of magnitude. This fact makes it possible to design highly efficient magnetoresistive elements on the basis of a strip structure of magnetic films
and thin semiconductor films