2 research outputs found

    Quantitative imaging of white and gray matter remyelination in the cuprizone demyelination model using the macromolecular proton fraction

    Get PDF
    Macromolecular proton fraction (MPF) has been established as a quantitative clinically-targeted MRI myelin biomarker based on recent demyelination studies. This study aimed to assess the capability of MPF to quantify remyelination using the murine cuprizone-induced reversible demyelination model. MPF was measured in vivo using the fast single-point method in three animal groups (control, cuprizone-induced demyelination, and remyelination after cuprizone withdrawal) and compared to quantitative immunohistochemistry for myelin basic protein (MBP), myelinating oligodendrocytes (CNP-positive cells), and oligodendrocyte precursor cells (OPC, NG2-positive cells) in the corpus callosum, caudate putamen, hippocampus, and cortex. In the demyelination group, MPF, MBP-stained area, and oligodendrocyte count were significantly reduced, while OPC count was significantly increased as compared to both control and remyelination groups in all anatomic structures (p < 0.05). All variables were similar in the control and remyelination groups. MPF and MBP-stained area strongly correlated in each anatomic structure (Pearson's correlation coefficients, r = 0.80-0.90, p < 0.001). MPF and MBP correlated positively with oligodendrocyte count (r = 0.70-0.84, p < 0.01 for MPF; r = 0.81-0.92, p < 0.001 for MBP) and negatively with OPC count (r = -0.69--0.77, p < 0.01 for MPF; r = -0.72--0.89, p < 0.01 for MBP). This study provides immunohistological validation of fast MPF mapping as a non-invasive tool for quantitative assessment of de- and remyelination in white and gray matter and indicates the feasibility of using MPF as a surrogate marker of reparative processes in demyelinating diseases

    A New Method for Treating Burn Wounds Using Targeted Delivery of Medicinal Substances by Magnetic Nanocarrier (Experimental Part)

    Get PDF
    ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π½Π° Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ эффСктивности адрСсной доставки ΠΌΠ°Π·ΠΈ лСвомСколь с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастиц ΠΈ внСшнСго ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля ΠΏΡ€ΠΈ тСрмичСских ΠΎΠΆΠΎΠ³Π°Ρ…. Π’ исслСдовании ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΎ участиС 20 крыс с двумя ΠΎΡ‡Π°Π³Π°ΠΌΠΈ ΠΎΠΆΠΎΠ³Π°. ΠšΡ€Ρ‹ΡΡ‹ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° 4 Π³Ρ€ΡƒΠΏΠΏΡ‹: Π±Π΅Π· лСчСния, тСрапия с использованиСм ΠΌΠ°Π·ΠΈ лСвомСколь, Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ с использованиСм наночастиц, ΠΌΠ°Π·ΠΈ лСвомСколь ΠΈ внСшнСго ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ΠŸΡ€ΠΈ гистологичСском исслСдовании Π½Π° 14-Π΅ сутки Π²ΠΎ всСх Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Π² Π·ΠΎΠ½Π΅ тСрмичСского поврСТдСния ΠΊΠΎΠΆΠΈ Π±Ρ‹Π»ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ ΠΎΠΆΠΎΠ³Π° III ΠΈ IV стСпСни с распространСниСм Π½Π΅ΠΊΡ€ΠΎΠ·Π° Π½Π° всю Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ Π΄Π΅Ρ€ΠΌΡ‹ ΠΈ Π½Π° ΠΌΡ‹ΡˆΡ†Ρ‹. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ с наночастицами, мазью лСвомСколь ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ ΠΏΠΎΠ»Π΅ΠΌ Π½Π° Ρ„ΠΎΠ½Π΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ воспалСния ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ ΠΎΡ‡Π°Π³ΠΎΠ²ΠΎΠ΅ появлСниС грануляционной Ρ‚ΠΊΠ°Π½ΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, гистологичСскиС исслСдования ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π°Π½Π΅Π²ΠΎΠ³ΠΎ процСсса Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ использованиС ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ€Π°Π½ΠΎΠ·Π°ΠΆΠΈΠ²Π»ΡΡŽΡ‰Π΅Π³ΠΎ срСдства Π½Π° основС наночастиц Π² сочСтании с мазью лСвомСколь ΡƒΠ»ΡƒΡ‡ΡˆΠ°Π΅Ρ‚ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡΠΊΠΎΡ€Π΅Π½ΠΈΡŽ эпитСлизации, Ρ‡Ρ‚ΠΎ Π² Ρ†Π΅Π»ΠΎΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ лСчСния ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ€Π°Π½Ρ‹. ИспользованиС внСшнСго ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля способствуСт адрСсной доставкС Π»Π΅Ρ‡Π΅Π±Π½ΠΎΠ³ΠΎ нанокомплСкса ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π² Ρ€Π°Π½Π΅Experimental studies have been carried out on laboratory animals to investigate the effectiveness of targeted delivery of levomekol ointment using magnetic nanoparticles and an external magnetic field for treatment of thermal burns. The study involved 20 rats, with two burns on each. The rats were divided into 4 groups: untreated; treated with levomekol ointment; treated with levomekol ointment associated with nanoparticles and an external magnetic field; and treated with magnetic field alone. Histological examination was conducted on Day 14, and in all groups, in the thermal burn zone of the skin there were signs of deep three- and four-degree burns with necrosis spread through the dermis, reaching the muscle. In the group with levomekol ointment associated with nanoparticles and magnetic field, inflammation was decreased, and focal granulation tissue formation was observed. Thus, histological studies of the burn wound process in laboratory animals showed that the use of an innovative biologically active wound healing agent based on nanoparticles in combination with the levomecol ointment improved tissue regeneration and accelerated epithelialization, which enhanced the effectiveness of burn wound treatment. The use of an external magnetic field facilitated targeted delivery of the therapeutic nanosystem and maintenance of the optimal concentration of the drug in the woun
    corecore