2,953 research outputs found

    Functional Morphology of Gliding Flight I. Modeling Reveals Distinct Performance Landscapes Based on Soaring Strategies

    Get PDF
    The physics of flight influences the morphology of bird wings through natural selection on flight performance. The connection between wing morphology and performance is unclear due to the complex relationships between various parameters of flight. In order to better understand this connection, we present a holistic analysis of gliding flight that preserves complex relationships between parameters. We use a computational model of gliding flight, along with analysis by uncertainty quantification, to 1) create performance landscapes of gliding based on output metrics (maximum lift-to-drag ratio, minimum gliding angle, minimum sinking speed, lift coefficient at minimum sinking speed); and 2) predict what parameters of flight (chordwise camber, wing aspect ratio, Reynolds number) would differ between gliding and non-gliding species of birds. We also examine performance based on soaring strategy for possible differences in morphology within gliding birds. Gliding birds likely have greater aspect ratios than non-gliding birds, due the high sensitivity of aspect ratio on most metrics of gliding performance. Furthermore, gliding birds can use two distinct soaring strategies based on performance landscapes. First, maximizing distance traveled (maximizing lift-to-drag ratio and minimizing gliding angle) should result in wings with high aspect ratios and middling-to-low wing chordwise camber. Second, maximizing lift extracted from updrafts should result in wings with middling aspect ratios and high wing chordwise camber. Following studies can test these hypotheses using morphological measurements

    Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance

    Get PDF
    The evolution of wing morphology among birds, and its functional consequences, remains an open question, despite much attention. This is in part because the connection between form and function is difficult to test directly. To address this deficit, in prior work we used computational modeling and sensitivity analysis to interrogate the impact of altering wing aspect ratio, camber, and Reynolds number on aerodynamic performance, revealing the performance landscapes that avian evolution has explored. In the present work, we used a dataset of three-dimensionally scanned bird wings coupled with the performance landscapes to test two hypotheses regarding the evolutionary diversification of wing morphology associated with gliding flight behavior: 1) gliding birds would exhibit higher wing aspect ratio and greater chordwise camber than their non-gliding counterparts; and 2) that two strategies for gliding flight exist, with divergent morphological conformations. In support of our first hypothesis, we found evidence of morphological divergence in both wing aspect ratio and camber between gliders and non-gliders, suggesting that wing morphology of birds that utilize gliding flight is under different selective pressures than the wings of non-gliding taxa. Furthermore, we found that these morphological differences also yielded differences in coefficient of lift measured both at the maximum lift to drag ratio and at minimum sinking speed, with gliding taxa exhibiting higher coefficient of lift in both cases. Minimum sinking speed was also lower in gliders than non-gliders. However, contrary to our hypothesis, we found that the maximum ratio of the coefficient of lift to the coefficient of drag differed between gliders and non-gliders. This may point to the need for gliders to maintain high lift capability for takeoff and landing independent of gliding performance, or could be due to the divergence in flight styles among gliders, as not all gliders are predicted to optimize either quantity. However, direct evidence for the existence of two morphologically defined gliding flight strategies was equivocal, with only slightly stronger support for an evolutionary model positing separate morphological optima for these strategies than an alternative model positing a single peak. The absence of a clear result may be an artifact of low statistical power owing to a relatively small sample size of gliding flyers expected to follow the “aerial search” strategy

    The Size Distribution of Trans-Neptunian Bodies

    Get PDF
    [Condensed] We search 0.02 deg^2 for trans-Neptunian objects (TNOs) with m<=29.2 (diameter ~15 km) using the ACS on HST. Three new objects are discovered, roughly 25 times fewer than expected from extrapolation of the differential sky density Sigma(m) of brighter objects. The ACS and other recent TNO surveys show departures from a power law size distribution. Division of the TNO sample into ``classical Kuiper belt'' (CKB) and ``Excited'' samples reveals that Sigma(m) differs for the two populations at 96% confidence. A double power law adequately fits all data. Implications include: The total mass of the CKB is ~0.010 M_Earth, only a few times Pluto's mass, and is predominately in the form of ~100 km bodies. The mass of Excited objects is perhaps a few times larger. The Excited class has a shallower bright-end size distribution; the largest objects, including Pluto, comprise tens of percent of the total mass whereas the largest CKBOs are only ~2% of its mass. The predicted mass of the largest Excited body is close to the Pluto mass; the largest CKBO is ~60 times less massive. The deficit of small TNOs occurs for sizes subject to disruption by present-day collisions, suggesting extensive depletion by collisions. Both accretion and erosion appearing to have proceeded to more advanced stages in the Excited class than the CKB. The absence of distant TNOs implies that any distant (60 AU) population must have less than the CKB mass in the form of objects 40 km or larger. The CKB population is sparser than theoretical estimates of the required precursor population for short period comets, but the Excited population could be a viable precursor population.Comment: Revised version accepted to the Astronomical Journal. Numerical results are very slightly revised. Implications for the origins of short-period comets are substantially revised, and tedious material on statistical tests has been collected into a new Appendi

    Covering Ground: A Look at Movement Patterns and Random Walk Behavior in \u3cem\u3eAquilonastra\u3c/em\u3e Sea Stars

    Get PDF
    The paths animals take while moving through their environments affect their likelihood of encountering food and other resources; thus, models of foraging behavior abound. To collect movement data appropriate for comparison with these models, we used time-lapse photography to track movements of a small, hardy, and easy-to-obtain organism, Aquilonastra anomala sea stars. We recorded the sea stars in a tank over many hours, with and without a food cue. With food present, they covered less distance, as predicted by theory; this strategy would allow them to remain near food. We then compared the paths of the sea stars to three common models of animal movement: Brownian motion, LĂ©vy walks, and correlated random walks; we found that the sea stars’ movements most closely resembled a correlated random walk. Additionally, we compared the search performance of models of Brownian motion, a LĂ©vy walk, and a correlated random walk to that of a model based on the sea stars’ movements. We found that the behavior of the modeled sea star walk was similar to that of the modeled correlated random walk and the Brownian motion model, but that the sea star walk was slightly more likely than the other walks to find targets at intermediate distances. While organisms are unlikely to follow an idealized random walk in all details, our data suggest that comparing the effectiveness of an organism’s paths to those from theory can give insight into the organism’s actual movement strategy. Finally, automated optical tracking of invertebrates proved feasible, and A. anomala was revealed to be a tractable, 2D-movement study system

    Three-dimensional trajectories and network analyses of group behaviour within chimney swift flocks during approaches to the roost

    Get PDF
    Chimney swifts (Chaetura pelagica) are highly manoeuvrable birds notable for roosting overnight in chimneys, in groups of hundreds or thousands of birds, before and during their autumn migration. At dusk, birds gather in large numbers from surrounding areas near a roost site. The whole flock then employs an orderly, but dynamic, circling approach pattern before rapidly entering a small aperture en masse. We recorded the three-dimensional trajectories of ≈1 800 individual birds during a 30 min period encompassing flock formation, circling, and landing, and used these trajectories to test several hypotheses relating to flock or group behaviour. Specifically, we investigated whether the swifts use local interaction rules based on topological distance (e.g. the n nearest neighbours, regardless of their distance) rather than physical distance (e.g. neighbours within x m, regardless of number) to guide interactions, whether the chimney entry zone is more or less cooperative than the surrounding flock, and whether the characteristic subgroup size is constant or varies with flock density. We found that the swift flock is structured around local rules based on physical distance, that subgroup size increases with density, and that there exist regions of the flock that are less cooperative than others, in particular the chimney entry zone

    Hunter Harvest of Pen-Reared Northern Bobwhites Released From the Surrogator

    Get PDF
    There has been increased interest in releasing pen-reared northern bobwhites (Colinus virginianus) to meet quail hunting and shooting objectives as populations have declined. The Surrogatort is a commercially available product for rearing and releasing gamebirds into the wild and is promoted as a method to enhance bobwhite survival, improve hunting, and increase recruitment from natural reproduction. We used return-to-hunter bag data from 3 properties in Alabama, Georgia, and Kentucky to evaluate the Surrogatort as a pre-hunting season release technique for pen-reared bobwhites. Across all sites, 3,859 5-week old banded bobwhite chicks were released at varying times during June through October, 2005–2010. Ninety-three quail hunts were conducted during November through January 2005–2011 comprising 431 hunt party hours which resulted in 19 banded bobwhites being harvested. The return-to-hunter bag for all sites combined was 0.005 (range 1⁄4 0.000 to 0.008). This was considered unsatisfactory at each site and across all sites combined for a quality hunting/shooting experience. The mean cost per chick released was 3.41(range1⁄43.41 (range 1⁄4 2.74 to 3.88)includingthecostsofquailchicks,Surrogatortunits,propane,andfeedacrossallsites.Themeancostperbirdreturned−to−hunterbag(AlabamaandGeorgia)was3.88) including the costs of quail chicks, Surrogatort units, propane, and feed across all sites. The mean cost per bird returned-to-hunter bag (Alabama and Georgia) was 655.80 (range 1⁄4 489.91to489.91 to 821.68). These costs did not include economic depreciation of Surrogatort units

    Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    Get PDF
    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust

    Exploring Dark Energy with Next-Generation Photometric Redshift Surveys

    Get PDF
    The coming decade will be an exciting period for dark energy research, during which astronomers will address the question of what drives the accelerated cosmic expansion as first revealed by type Ia supernova (SN) distances, and confirmed by later observations. The mystery of dark energy poses a challenge of such magnitude that, as stated by the Dark Energy Task Force (DETF), nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. The lack of multiple complementary precision observations is a major obstacle in developing lines of attack for dark energy theory. This lack is precisely what next-generation surveys will address via the powerful techniques of weak lensing (WL) and baryon acoustic oscillations (BAO) -- galaxy correlations more generally -- in addition to SNe, cluster counts, and other probes of geometry and growth of structure. Because of their unprecedented statistical power, these surveys demand an accurate understanding of the observables and tight control of systematics. This white paper highlights the opportunities, approaches, prospects, and challenges relevant to dark energy studies with wide-deep multiwavelength photometric redshift surveys. Quantitative predictions are presented for a 20000 sq. deg. ground-based 6-band (ugrizy) survey with 5-sigma depth of r~27.5, i.e., a Stage 4 survey as defined by the DETF

    Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    Full text link
    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B.C. Goodwin, Temporal Oscillations in Cells, (Academic Press, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comp. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein, and metabolite concentrations. Further, we present results for a three gene case in co-regulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological systemComment: 21 pages, 7 figures; also selected in vjbio of August 2005; this version corrects a misorder in the last three references of the published versio
    • 

    corecore