4,512 research outputs found

    Sizing the European Shadow Banking System: A New Methodology

    Get PDF
    One of the critical unanswered questions relating to the shadow-banking system has been to quantify its scale in an industry where entities, by design, are opaque and often outside of regulated and publically shared frameworks. However almost all shadow banking entities, including hedge funds, private equity funds and special purpose vehicles ("SPVs"), interact with the financial markets via regulated investment banks. For example, many SPVs are in fact originated as part of investment banking business and hedge funds typically transact in financial markets exclusively via the "prime brokerage" division of investment banks. This interface with the regulated banking environment combines with the typical practise by investment banks of equalizing compensation (Including bonus) ratios to revenues globally which then allows identification of the implied difference in revenues and hence assets that represents the shadow banking system. The paper will present for critique the results of this methodology to estimate the UK shadow banking system including European business managed from the UK. The estimate will imply a larger scale of shadow banking than previous estimates at £548 billion which, when combined with hedge fund assets of £360 billion (FSA, 2011) gives total shadow banking assets of over £900 billion. It is proposed that the large gap between the estimates of this paper and other estimates reflects the huge, and previously unknown, scale of offshore activities of UK investment banks

    A conserved and essential basic region mediates tRNA binding to the Elp1 subunit of the <em>Saccharomyces cerevisiae</em> Elongator complex

    Get PDF
    Elongator is a conserved, multi-protein complex discovered in Saccharomyces cerevisiae, loss of which confers a range of pleiotropic phenotypes. Elongator in higher eukaryotes is required for normal growth and development and a mutation in the largest subunit of human Elongator (Elp1) causes familial dysautonomia, a severe recessive neuropathy. Elongator promotes addition of mcm(5) and ncm(5) modifications to uridine in the tRNA anticodon ‘wobble’ position in both yeast and higher eukaryotes. Since these modifications are required for the tRNAs to function efficiently, a translation defect caused by hypomodified tRNAs may therefore underlie the variety of phenotypes associated with Elongator dysfunction. The Elp1 carboxy-terminal domain contains a highly conserved arginine/lysine-rich region that resembles a nuclear localization sequence (NLS). Using alanine substitution mutagenesis, we show that this region is essential for Elongator's function in tRNA wobble uridine modification. However, rather than acting to determine the nucleo-cytoplasmic distribution of Elongator, we find that the basic region plays a critical role in a novel interaction between tRNA and the Elp1 carboxy-terminal domain. Thus the conserved basic region in Elp1 may be essential for tRNA wobble uridine modification by acting as tRNA binding motif

    Improved Parameters and New Lensed Features for Q0957+561 from WFPC2 Imaging

    Get PDF
    New HST WFPC2 observations of the lensed double QSO 0957+561 will allow improved constraints on the lens mass distribution and hence will improve the derived value of H0_0. We first present improved optical positions and photometry for the known components of this lens. The optical separation between the A and B quasar images agrees with VLBI data at the 10 mas level, and the optical center of the primary lensing galaxy G1 coincides with the VLBI source G' to within 10 mas. The best previous model for this lens (Grogin and Narayan 1996) is excluded by these data and must be reevaluated. Several new resolved features are found within 10\arcsec of G1, including an apparent fold arc with two bright knots. Several other small galaxies are detected, including two which may be multiple images of each other. We present positions and crude photometry of these objects.Comment: 7 pages including 2 postscript figures, LaTeX, emulateapj style. Also available at http://www.astro.lsa.umich.edu:80/users/philf/www/papers/list.htm

    Flow Injection Atomic Absorption Spectrometry: The Kinetics of Instrument Response

    Get PDF
    The concept of dispersion coefficient is discussed with particular reference to flow injection atomic absorption spectrometry where the detector contributes appreciably to the analytical signal characteristics. Single- and parallel-tank models of instrument response are developed and critically examined. The progress made to date by investigators of nebuliser performance is briefly reviewed prior to developing a semi-empirical extended-tank model of instrument response. The capabilities of this model are explored by deriving a set of equations for instrument response, and comparing the predictions with experimental results. Agreement is generally good. Advantages of the modelling approach are discussed

    The Size Distribution of Trans-Neptunian Bodies

    Get PDF
    [Condensed] We search 0.02 deg^2 for trans-Neptunian objects (TNOs) with m<=29.2 (diameter ~15 km) using the ACS on HST. Three new objects are discovered, roughly 25 times fewer than expected from extrapolation of the differential sky density Sigma(m) of brighter objects. The ACS and other recent TNO surveys show departures from a power law size distribution. Division of the TNO sample into ``classical Kuiper belt'' (CKB) and ``Excited'' samples reveals that Sigma(m) differs for the two populations at 96% confidence. A double power law adequately fits all data. Implications include: The total mass of the CKB is ~0.010 M_Earth, only a few times Pluto's mass, and is predominately in the form of ~100 km bodies. The mass of Excited objects is perhaps a few times larger. The Excited class has a shallower bright-end size distribution; the largest objects, including Pluto, comprise tens of percent of the total mass whereas the largest CKBOs are only ~2% of its mass. The predicted mass of the largest Excited body is close to the Pluto mass; the largest CKBO is ~60 times less massive. The deficit of small TNOs occurs for sizes subject to disruption by present-day collisions, suggesting extensive depletion by collisions. Both accretion and erosion appearing to have proceeded to more advanced stages in the Excited class than the CKB. The absence of distant TNOs implies that any distant (60 AU) population must have less than the CKB mass in the form of objects 40 km or larger. The CKB population is sparser than theoretical estimates of the required precursor population for short period comets, but the Excited population could be a viable precursor population.Comment: Revised version accepted to the Astronomical Journal. Numerical results are very slightly revised. Implications for the origins of short-period comets are substantially revised, and tedious material on statistical tests has been collected into a new Appendi
    • …
    corecore