852 research outputs found

    Global Existence and Regularity for the 3D Stochastic Primitive Equations of the Ocean and Atmosphere with Multiplicative White Noise

    Full text link
    The Primitive Equations are a basic model in the study of large scale Oceanic and Atmospheric dynamics. These systems form the analytical core of the most advanced General Circulation Models. For this reason and due to their challenging nonlinear and anisotropic structure the Primitive Equations have recently received considerable attention from the mathematical community. In view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the Primitive Equations and more generally. In this work we study a stochastic version of the Primitive Equations. We establish the global existence of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, LtpLxqL^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.Comment: To appear in Nonlinearit

    Respiration of \u3cem\u3eEscherichia coli\u3c/em\u3e in the Mouse Intestine

    Get PDF
    Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo3 oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine

    Comparison of Carbon Nutrition for Pathogenic and Commensal ,\u3cem\u3eEscherichia coli\u3c/em\u3e Strains in the Mouse Intestine

    Get PDF
    The carbon sources that support the growth of pathogenic Escherichia coli O157:H7 in the mammalian intestine have not previously been investigated. In vivo, the pathogenic E. coli EDL933 grows primarily as single cells dispersed within the mucus layer that overlies the mouse cecal epithelium. We therefore compared the pathogenic strain and the commensal E. coli strain MG1655 modes of metabolism in vitro, using a mixture of the sugars known to be present in cecal mucus, and found that the two strains used the 13 sugars in a similar order and cometabolized as many as 9 sugars at a time. We conducted systematic mutation analyses of E. coli EDL933 and E. coli MG1655 by using lesions in the pathways used for catabolism of 13 mucus-derived sugars and five other compounds for which the corresponding bacterial gene system was induced in the transcriptome of cells grown on cecal mucus. Each of 18 catabolic mutants in both bacterial genetic backgrounds was fed to streptomycin-treated mice, together with the respective wild-type parent strain, and their colonization was monitored by fecal plate counts. None of the mutations corresponding to the five compounds not found in mucosal polysaccharides resulted in colonization defects. Based on the mutations that caused colonization defects, we determined that both E. coli EDL933 and E. coli MG1655 used arabinose, fucose, and N-acetylglucosamine in the intestine. In addition, E. coli EDL933 used galactose, hexuronates, mannose, and ribose, whereas E. coli MG1655 used gluconate and N-acetylneuraminic acid. The colonization defects of six catabolic lesions were found to be additive with E. coli EDL933 but not with E. coli MG1655. The data indicate that pathogenic E. coli EDL933 uses sugars that are not used by commensal E. coli MG1655 to colonize the mouse intestine. The results suggest a strategy whereby invading pathogens gain advantage by simultaneously consuming several sugars that may be available because they are not consumed by the commensal intestinal microbiota

    Mendelian randomisation study of body composition and depression in people of East Asian ancestry highlights potential setting-specific causality

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials: The data that support the findings of this study are available from the China Kadoorie Biobank Collaborative Group, but restrictions apply to the availability of these data, which were used under licence for the current study, and so are not publicly available. Summary data are however available from the authors upon reasonable request and with permission of the China Kadoorie Biobank Collaborative Group.BACKGROUND: Extensive evidence links higher body mass index (BMI) to higher odds of depression in people of European ancestry. However, our understanding of the relationship across different settings and ancestries is limited. Here, we test the relationship between body composition and depression in people of East Asian ancestry. METHODS: Multiple Mendelian randomisation (MR) methods were used to test the relationship between (a) BMI and (b) waist-hip ratio (WHR) with depression. Firstly, we performed two-sample MR using genetic summary statistics from a recent genome-wide association study (GWAS) of depression (with 15,771 cases and 178,777 controls) in people of East Asian ancestry. We selected 838 single nucleotide polymorphisms (SNPs) correlated with BMI and 263 SNPs correlated with WHR as genetic instrumental variables to estimate the causal effect of BMI and WHR on depression using the inverse-variance weighted (IVW) method. We repeated these analyses stratifying by home location status: China versus UK or USA. Secondly, we performed one-sample MR in the China Kadoorie Biobank (CKB) in 100,377 participants. This allowed us to test the relationship separately in (a) males and females and (b) urban and rural dwellers. We also examined (c) the linearity of the BMI-depression relationship. RESULTS: Both MR analyses provided evidence that higher BMI was associated with lower odds of depression. For example, a genetically-instrumented 1-SD higher BMI in the CKB was associated with lower odds of depressive symptoms [OR: 0.77, 95% CI: 0.63, 0.95]. There was evidence of differences according to place of residence. Using the IVW method, higher BMI was associated with lower odds of depression in people of East Asian ancestry living in China but there was no evidence for an association in people of East Asian ancestry living in the USA or UK. Furthermore, higher genetic BMI was associated with differential effects in urban and rural dwellers within China. CONCLUSIONS: This study provides the first MR evidence for an inverse relationship between BMI and depression in people of East Asian ancestry. This contrasts with previous findings in European populations and therefore the public health response to obesity and depression is likely to need to differ based on sociocultural factors for example, ancestry and place of residence. This highlights the importance of setting-specific causality when using genetic causal inference approaches and data from diverse populations to test hypotheses. This is especially important when the relationship tested is not purely biological and may involve sociocultural factors

    Nitric oxide production and antioxidant function during viral infection of the coccolithophore Emiliania huxleyi

    Get PDF
    Emiliania huxleyi is a globally important marine phytoplankton that is routinely infected by viruses. Understanding the controls on the growth and demise of E. huxleyi blooms is essential for predicting the biogeochemical fate of their organic carbon and nutrients. In this study, we show that the production of nitric oxide (NO), a gaseous, membrane-permeable free radical, is a hallmark of early-stage lytic infection in E. huxleyi by Coccolithoviruses, both in culture and in natural populations in the North Atlantic. Enhanced NO production was detected both intra- and extra-cellularly in laboratory cultures, and treatment of cells with an NO scavenger significantly reduced viral production. Pre-treatment of exponentially growing E. huxleyi cultures with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prior to challenge with hydrogen peroxide (H2O2) led to greater cell survival, suggesting that NO may have a cellular antioxidant function. Indeed, cell lysates generated from cultures treated with SNAP and undergoing infection displayed enhanced ability to detoxify H2O2. Lastly, we show that fluorescent indicators of cellular ROS, NO, and death, in combination with classic DNA- and lipid-based biomarkers of infection, can function as real-time diagnostic tools to identify and contextualize viral infection in natural E. huxleyi blooms

    The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study

    Get PDF
    Importance: Most previous genome-wide association studies (GWAS) of depression have used data from individuals of European descent. This limits the understanding of the underlying biology of depression and raises questions about the transferability of findings between populations. Objective: To investigate the genetics of depression among individuals of East Asian and European descent living in different geographic locations, and with different outcome definitions for depression. Design, Setting, and Participants: Genome-wide association analyses followed by meta-analysis, which included data from 9 cohort and case-control data sets comprising individuals with depression and control individuals of East Asian descent. This study was conducted between January 2019 and May 2021. Exposures: Associations of genetic variants with depression risk were assessed using generalized linear mixed models and logistic regression. The results were combined across studies using fixed-effects meta-analyses. These were subsequently also meta-analyzed with the largest published GWAS for depression among individuals of European descent. Additional meta-analyses were carried out separately by outcome definition (clinical depression vs symptom-based depression) and region (East Asian countries vs Western countries) for East Asian ancestry cohorts. Main Outcomes and Measures: Depression status was defined based on health records and self-report questionnaires. Results: There were a total of 194 548 study participants (approximate mean age, 51.3 years; 62.8% women). Participants included 15 771 individuals with depression and 178 777 control individuals of East Asian descent. Five novel associations were identified, including 1 in the meta-analysis for broad depression among those of East Asian descent: rs4656484 (β = -0.018, SE = 0.003, P = 4.43x10-8) at 1q24.1. Another locus at 7p21.2 was associated in a meta-analysis restricted to geographically East Asian studies (β = 0.028, SE = 0.005, P = 6.48x10-9 for rs10240457). The lead variants of these 2 novel loci were not associated with depression risk in European ancestry cohorts (β = -0.003, SE = 0.005, P = .53 for rs4656484 and β = -0.005, SE = 0.004, P = .28 for rs10240457). Only 11% of depression loci previously identified in individuals of European descent reached nominal significance levels in the individuals of East Asian descent. The transancestry genetic correlation between cohorts of East Asian and European descent for clinical depression was r = 0.413 (SE = 0.159). Clinical depression risk was negatively genetically correlated with body mass index in individuals of East Asian descent (r = -0.212, SE = 0.084), contrary to findings for individuals of European descent. Conclusions and Relevance: These results support caution against generalizing findings about depression risk factors across populations and highlight the need to increase the ancestral and geographic diversity of samples with consistent phenotyping

    Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence?

    Get PDF
    BACKGROUND: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10–15% of the reactivation cases. METHODOLOGY/PRINCIPAL FINDINGS: We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. CONCLUSIONS/SIGNIFICANCE: Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent infection

    Nanofluidic transport governed by the liquid/vapour interface

    Get PDF
    Liquid/vapour interfaces govern the behaviour of a wide range of systems but remain poorly understood, leaving ample margin for the exploitation of intriguing functionalities for applications. Here, we systematically investigate the role of liquid/vapour interfaces in the transport of water across apposing liquid menisci in osmosis membranes comprising short hydrophobic nanopores that separate two fluid reservoirs. We show experimentally that mass transport is limited by molecular reflection from the liquid/vapour interface below a certain length scale, which depends on the transmission probability of water molecules across the nanopores and on the condensation probability of a water molecule incident on the liquid surface. This fundamental yet elusive condensation property of water is measured under near-equilibrium conditions and found to decrease from 0.36 ± 0.21 at 30 °C to 0.18 ± 0.09 at 60 °C. These findings define the regime in which liquid/vapour interfaces govern nanofluidic transport and have implications for understanding mass transport in nanofluidic devices, droplets and bubbles, biological components and porous media involving liquid/vapour interfaces.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R10-CW-09

    Functional Induction of the Cystine-Glutamate Exchanger System Xc- Activity in SH-SY5Y Cells by Unconjugated Bilirubin

    Get PDF
    We have previously reported that exposure of SH-SY5Y neuroblastoma cells to unconjugated bilirubin (UCB) resulted in a marked up-regulation of the mRNA encoding for the Na+ -independent cystine∶glutamate exchanger System Xc− (SLC7A11 and SLC3A2 genes). In this study we demonstrate that SH-SY5Y cells treated with UCB showed a higher cystine uptake due to a significant and specific increase in the activity of System Xc−, without the contribution of the others two cystine transporters (XAG− and GGT) reported in neurons. The total intracellular glutathione content was 2 folds higher in the cells exposed to bilirubin as compared to controls, suggesting that the internalized cystine is used for gluthathione synthesis. Interestingly, these cells were significantly less sensitive to an oxidative insult induced by hydrogen peroxide. If System Xc− is silenced the protection is lost. In conclusion, these results suggest that bilirubin can modulate the gluthathione levels in neuroblastoma cells through the induction of the System Xc−, and this renders the cell less prone to oxidative damage

    Deciphering the universe of RNA structures and trans RNA-RNA interactions of transcriptomes in vivo: from experimental protocols to computational analyses

    Get PDF
    The last few years have seen an explosion of experimental and computational methods for investigating RNA structures of entire transcriptomes in vivo. Very recent experimental protocols now also allow trans RNA–RNA interactions to be probed in a transcriptome-wide manner. All of the experimental strategies require comprehensive computational pipelines for analysing the raw data and converting it back into actual RNA structure features or trans RNA–RNA interactions. The overall performance of these methods thus strongly depends on the experimental and the computational protocols employed. In order to get the best out of both worlds, both aspects need to be optimised simultaneously. This review introduced the methods and proposes ideas how they could be further improved
    • …
    corecore