37 research outputs found

    Centralized Inverted Decoupling Control

    Get PDF
    This paper presents a new methodology of multivariable centralized control based on the structure of inverted decoupling. The method is presented for general n×n processes, obtaining very simple general expressions for the controller elements with a complexity independent of the system size. The possible configurations and realizability conditions are stated. Then, the specification of performance requirements is carried out from simple open loop transfer functions for three common cases. As a particular case, it is shown that the resulting controller elements have PI structure or filtered derivative action plus a time delay when the process elements are given by first order plus time delay systems. Comparisons with other works demonstrate the effectiveness of this methodology through the use of several simulation examples and an experimental lab process

    Control of integrating process with dead time using auto-tuning approach

    No full text
    A modification of Smith predictor for controlling higher order processes with integral action and long dead-time is proposed in this paper. The controller used in this Smith predictor is an Integral-Proportional Derivative controller, where the Integrator is in the forward path and the Proportional and Derivative control are in the feedback, acting on the feedback signal. The main objective of this paper is to design a dead time compensator, which has minimum tuning parameters, simple controller tuning, and robust performance of tuning formulae, and to obtain a critically damped system that is as fast as possible in its set point and load disturbance rejection performance. The controller in this paper is tuned by an adaptive method. This paper also presents a survey of various dead time compensators and their performance analysis
    corecore