12 research outputs found

    Synthesis of deuterium‐labelled amlexanox and its metabolic stability against mouse, rat, and human microsomes

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149374/1/jlcr3716_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149374/2/jlcr3716.pd

    Structural elements that enable specificity for mutant EGFR kinase domains with next-generation small-molecule inhibitors.

    No full text
    Specificity for a desired enzyme target is an essential property of small-molecule inhibitors. Molecules targeting oncogenic driver mutations in the epidermal growth factor receptor (EGFR) kinase domain have had a considerable clinical impact due to their selective binding to cancer-causing mutants compared to wild type. Despite the availability of clinically approved drugs for cancers driven by EGFR mutants, persistent challenges in drug resistance in the past decades have led to newer generations of drugs with divergent chemical structures. The present clinical complications are mainly due to acquired resistance to third-generation inhibitors by the acquisition of the C797S mutation. Diverse fourth-generation candidates and tool compounds with C797S selectivity have emerged and their structural characterization has allowed for understanding of the molecular factors that allow for EGFR mutant selective binding. Here, we have reviewed all known structurally-characterized EGFR TKIs targeting clinically-relevant mutations to identify consistent binding mode features that enable C797S inhibition. Newer generation EGFR inhibitors exhibit consistent and previously underutilized hydrogen bonding interactions with the conserved K745 and D855 residue side chains. We also consider binding modes and hydrogen bonding interactions of inhibitors targeting the classical ATP and the more unique allosteric sites

    Molecular Design of a “Two-in-One” Orthosteric-Allosteric Chimeric Mutant Selective EGFR Inhibitor

    No full text
    Inhibitors developed to target the epidermal growth factor receptor (EGFR) are an effective therapy for patients with non-small cell lung cancer harbouring drug-sensitive activating mutations in the EGFR kinase domain. Drug resistance due to treatment-acquired mutations within the receptor itself has motivated development of successive generations of inhibitors that bind in the ATP-site, and third-generation agent osimertinib is now a first-line treatment for this disease. More recently, allosteric inhibitors have been developed to overcome the C797S mutation that confers resistance to osimertinib. In this study, we present the rational structure-guided design and synthesis of a mutant-selective EGFR inhibitor that spans the ATPand allosteric sites. The lead compound consists of a pyridinyl imidazole scaffold that binds irreversibly in the orthosteric site fused with a benzylisoindolinedione occupying the allosteric site. The compound potently inhibits enzymatic activity in L858R/T790M/C797S mutant EGFR (4.9 nM), with relative sparing of wild-type EGFR (47 nM). Additionally, this compound achieves cetuximab-independent, mutant-selective cellular efficacy on the L858R and L858R/T790M variant

    Macrocyclization of Quinazoline-Based EGFR Inhibitors Leads to Exclusive Mutant Selectivity for EGFR L858R and Del19

    No full text
    Activating mutations in the epidermal growth factor receptor (EGFR) are frequent oncogenic drivers of non-small-cell lung cancer (NSCLC). The most frequent alterations in EGFR are short in-frame deletions in exon 19 (Del19) and the missense mutation L858R, which both lead to increased activity and sensitization of NSCLC to EGFR inhibition. The first approved EGFR inhibitors used for first-line treatment of NSCLC, gefitinib and erlotinib, are quinazoline-based. However, both inhibitors have several known off-targets, and they also potently inhibit wild-type (WT) EGFR, resulting in side effects. Here, we applied a macrocyclic strategy on a quinazoline-based scaffold as a proof-of-concept study with the goal of increasing kinome-wide selectivity of this privileged inhibitor scaffold. Kinome-wide screens and SAR studies yielded 3f, a potent inhibitor for the most common EGFR mutation (EGFR Del19: 119 nM) with selectivity against the WT receptor (EGFR: >10 μM) and the kinome

    Macrocyclization of Quinazoline-Based EGFR Inhibitors Leads to Exclusive Mutant Selectivity for EGFR L858R and Del19

    No full text
    Activating mutations in the epidermal growth factor receptor (EGFR) are frequent oncogenic drivers of non-small-cell lung cancer (NSCLC). The most frequent alterations in EGFR are short in-frame deletions in exon 19 (Del19) and the missense mutation L858R, which both lead to increased activity and sensitization of NSCLC to EGFR inhibition. The first approved EGFR inhibitors used for first-line treatment of NSCLC, gefitinib and erlotinib, are quinazoline-based. However, both inhibitors have several known off-targets, and they also potently inhibit wild-type (WT) EGFR, resulting in side effects. Here, we applied a macrocyclic strategy on a quinazoline-based scaffold as a proof-of-concept study with the goal of increasing kinome-wide selectivity of this privileged inhibitor scaffold. Kinome-wide screens and SAR studies yielded 3f, a potent inhibitor for the most common EGFR mutation (EGFR Del19: 119 nM) with selectivity against the WT receptor (EGFR: >10 μM) and the kinome

    The origin of potency and mutant-selective inhibition by bivalent ATP-allosteric EGFR inhibitors

    No full text
    Targeted small-molecule therapies in mutant epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) have undergone several generations of development in response to acquired drug resistance. With the emergence of the highly prevalent T790M and C797S drug-resistant mutations, a diverse arsenal of ATP-competitive molecules has led to the front-line drug AZD9291 (osimertinib) and several in clinical development. Several allosteric inhibitors bind a site adjacent to the ATP-binding site and exhibit synergy when dosed in combination with certain ATP-competitive inhibitors. Structure-guided design of molecules that anchor to both sites simultaneously, namely ATP-allosteric bivalent inhibitors, have been reported as proof-of-concept EGFR mutant-selective compounds, however their properties are underexplored and currently exhibit modest activity in human cancer cell lines. To better understand the structural and functional properties of such molecules, we have carried out structure-activity relationships (SAR) defining the groups of the allosteric pocket that are responsible for enabling mutant selectivity and potency of this series. We find that the back pocket phenol ring enables stronger binding while the methylisoindolinone is responsible for enabling selectivity for the oncogenic mutations. An optimized allosteric site-binding group and a C797-targeting ATP-site scaffold exhibit inhibitory effects in a variety of EGFR mutant cell lines, which is improved over earlier examples. Additionally, a closely related reversible-binding analogue exhibits mutant-selective activity and ~1 nM biochemical potency against L858R/T790M/C797S and promising antiproliferative effects in human cancer cells indicating that ATP-allosteric bivalent kinase inhibitors may serve as tool compounds in understanding overcoming these important resistance mechanisms. These results highlight the utility of bivalent ATP-allosteric compounds in understanding the impact certain functional groups have in the potency and mutant-selectivity enabled by allosteric pocket binding. The results of this study incentivize further investigations of compounds that bind within an exit vector made accessible in the inactive αC-helix “out” conformation as a novel approach for kinase inhibitors
    corecore